Hoppa till huvudinnehåll

Publications

Preprints

  1. Jasso, G. and Muro, F.: The Triangulated Auslander-Iyama Correspondence, with an appendix by B. Keller. arXiv: 2208.14413 [math.RT], 2022 (submitted)

Publications

  1. Dyckerhoff, T., Jasso, G., Lekili, Y.: The symplectic geometry of higher Auslander algebras: Symmetric products of disks. Forum Math. Sigma. 9 (2021), Paper No. e10, 14.
  2. Dyckerhoff, T., Jasso, G., Walde, T.: Generalised BGP reflection functors via the Grothendieck construction. Int. Math. Res. Not. IMRN. (2021), 20, 15733–15745.
  3. Dyckerhoff, T., Jasso, G., Walde, T.: Simplicial structures in higher Auslander–Reiten theory. Adv. Math. 355 (2019), 106762.
  4. Jasso, G., Külshammer, J.: Higher Nakayama algebras I: Construction. Adv. Math. 351 (2019), 1139–1200.
  5. Jasso, G., Kvamme, S.: An introduction to higher Auslander-Reiten theory. Bull. Lond. Math. Soc. 51, 1–24 (2019).
  6. Demonet, L., Iyama, O., Jasso, G.: τ-tilting finite algebras, bricks, and g-vectors. Int. Math. Res. Not. IMRN (2019), 3, 852–892.
  7. Iyama, O., Jasso, G.: Higher Auslander Correspondence for Dualizing R-Varieties. Algebr. Represent. Theory. 20 (2017), 335–354.
  8. Jasso, G.: n-abelian and n-exact categories. Math. Z. (2016), 283, 703–759.
  9. Bergh, P.A., Jasso, G., Thaule, M.: Higher n-angulations from local rings. J. Lond. Math. Soc. (2). 93 (2016), 123–142.
  10. Jasso, G.: τ^2-stable tilting complexes over weighted projective lines. Adv. Math. 273 (2015), 1–31.
  11. Jasso, G.: Reduction of τ-tilting modules and torsion pairs. Int. Math. Res. Not. IMRN. (2015), 16, 7190–7237.
  12. Jasso, G.: The extended affine Lie algebra associated with a connected non-negative unit form. J. Algebra. 409 (2014), 148–161.
  13. Barot, M., Geiß, C., Jasso, G.: Tubular cluster algebras II: Exponential growth. J. Pure Appl. Algebra. 217 (2013), 1825–1837.

Remarks

  • My Ph.D. thesis comprises articles [8] and [10-11]
  • My master’s thesis comprises part of article [13]
  • My bachelor’s thesis comprises article [12]

Proceedings, extended abstracts and other writings

  1. Jasso, G., Keller, B. and Muro, F. The Donovan-Wemyss Conjecture via the Triangulated Auslander-Iyama Correspondence. arXiv:2301.11593 [math.AG] (Contribution to the proceedings of the Abel Symposium 2022: Triangulated categories in representation theory and beyond.)
  2. Jasso, G.: The symplectic geometry of higher Auslander algebras, an overview. In: Amiot, C., Crawley-Boevey, W., Iyama, O., and Krause, H. (eds.) Representation Theory of Quivers and Finite Dimensional Algebras. Oberwolfach Rep. 17 (2020), no. 1, pp. 143–230.
  3. Jasso, G.: Higher Auslander algebras of type A and the higher Waldhausen S-constructions. In: Šťovíček, J. and Trlifaj, J. (eds.) Representation theory and beyond. pp. 249–265. Amer. Math. Soc., Providence, RI (2020).
  4. Jasso, G., Külshammer, J.: Nakayama-type phenomena in higher Auslander-Reiten theory. In: Leuschke, G.J., Frauke Bleher, F., Schiffler, R., and Zacharia, D. (eds.) Representations of algebras. pp. 79–98. Amer. Math. Soc., Providence, RI (2018).
  5. Jasso, G.: Spherical objects in higher Auslander–Reiten theory (joint work with J. Külshammer). In: Crawley-Boevey, W., Iyama, O., and Krause, H. (eds.) Representation Theory of Quivers and Finite Dimensional Algebras. pp. 591–681 (2017).
  6. Jasso, G., Külshammer, J.: The naive approach for constructing the derived category of a d-abelian category fails. arXiv:1604.03473. (2016). Notes. not intended for publication.
  7. Jasso, G.: Reduction of τ-tilting modules and torsion classes. In: Proceedings of the 16th Workshop on Represenation Theory of Algebraic Groups and Quantum Groups. pp. 157–160 (2013).
  8. Jasso, G.: Cluster-tilted algebras of canonical type and quivers with potential. In: Proceedings of the 45th Symposium on Ring Theory and Representation Theory. pp. 61–68 (2012).
  9. Jasso, G.: Cluster-tilted algebras of canonical type and graded quivers with potential. In: Proceedings of the 15th Workshop on Represenation Theory of Algebraic Groups and Quantum Groups. pp. 13–18 (2012).
Sidansvarig:  | 2022-05-19