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Abstract

This work treats multi-pitch estimation, and in particular the common misclassification issue wherein the
pitch at half the true fundamental frequency, the sub-octave, is chosen instead of the true pitch. Extending on
current group LASSO-based methods for pitch estimation, this work introduces an adaptive total variation
penalty, which both enforces group- and block sparsity, as well as deals with errors due to sub-octaves. Also
presented is a scheme for signal adaptive dictionary construction and automatic selection of the regularization
parameters. Used together with this scheme, the proposed method is shown to yield accurate pitch estimates
when evaluated on synthetic speech data. The method is shown to perform as good as, or better than,
current state-of-the-art sparse methods while requiring fewer tuning parameters than these, as well as several
conventional pitch estimation methods, even when these are given oracle model orders . When evaluated on
a set of ten musical pieces, the method shows promising results for separating multi-pitch signals.
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1. Introduction

Pitch estimation is a problem arising in a variety of fields, not least in audio processing. It is a fundamen-
tal building block in several music information retrieval applications, such as automatic music transcription,
i.e., automatic sheet music generation from audio (see, e.g.,[1, 2]). Pitch estimation could also be used as
a component in methods for cover song detection and music querying, possibly improving currently avail-
able services. For example, the popular query service Shazam [3] operates by matching hashed portions
of spectrograms of user-provided samples against a large music database. As a change of instrumentation
would alter the spectrogram of a song, such algorithms can only identify recordings of a song that are very
similar to the actual recording present in the database. Thus, services such as Shazam might fail to identify,
e.g., acoustic alternate versions of rock songs. A query algorithm based on pitch estimation could on the
other hand correctly match the acoustic version to the original electrified one as it would recognize, e.g., the
main melody. The applicability of pitch estimation to music is due to the fact that the notes produced by
many instruments used in Western tonal music, e.g., woodwind instruments such as the clarinet, exhibit a
structure that is well modeled using a harmonic sinusoidal structure [4]. However, for some plucked stringed
instruments, such as the guitar and the piano, the tension of the string results in the harmonics deviating
from perfect integer multiples of the fundamental frequency, a phenomenon called inharmonicity. For some
instruments, such as the piano, there are models describing the structure of the inharmonicity based on
physical properties of the instrument [5]. Such signals require agile pitch estimation algorithms allowing for
this form of deviations (see, e.g., [6–8]). In this work, we will assume such deviations to be small, although
noting that one may extend the here presented work along the lines in [6–8]. Estimating the fundamental
frequencies of multi-pitch signals is generally a difficult problem. There are many methods available, see, e.g.,
[9], but most of them require a priori model order knowledge, i.e., they require knowledge of the number of
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pitches present in the signal, as well as the number of active harmonics for each pitch.1 Three such methods
will be used in this work as reference estimators. The first method, here referred to as ORTH, exploits
orthogonality between the signal and noise subspaces to form pitch frequency estimates. The second method
is an optimal filtering method based on the Capon estimator, and is therefore here referred to as Capon. The
third method is an approximate non-linear least squares method, here referred to as ANLS [10–12] (see also
[9] for an overview of these methods). Methods not requiring a priori model order knowledge have also been
proposed. For example, [13] uses a sparse dictionary representation of the signal and regularization penalties
to implicitly choose the model order. A similar, but less general, method was introduced in [14], which used
a dictionary specifically tailored to piano notes for estimating pitch frequencies generated by pianos. Other
source specific methods include [15] and [16]. In [17], the author proposes a sparsity-exploiting method,
where the dictionary atoms are learnt from databases of short-time Fourier transforms of musical notes. A
similar idea is used in [18] for pitch-tracking in music. In [16] and [19], pitch estimation is based on the
assumption of spectral smoothness, i.e., the amplitudes of the harmonics within a pitch are assumed to be of
comparable magnitudes. Another field of research is performing multi-pitch estimation, often in the context
of automatic music transcription, by decomposing the spectrogram of the signal into two matrices, one that
describes the frequency content of the signal and one that describes the time activation of the frequency
components. This method makes use of the non-negative matrix factorization, first introduced in this con-
text in [20] and since then widely used, such as in, e.g., [21]. There are also more statistical approaches to
multi-pitch estimation, posing the estimation as a Bayesian inference problem (see, e.g., [22]).

The approach to multi-pitch estimation presented in this work is to solve the problem in a group sparse
modeling framework, which allows us to avoid making explicit assumptions on the number of pitches, or on
the number of harmonics in each pitch. Instead, the number of components in the signal is chosen implicitly,
by the setting of some tuning parameters. These tuning parameters determine how appropriate a given
pitch candidate is to be present in the signal and may be set using cross-validation, or by using some simple
heuristics. The sparse modeling approach has earlier been used for audio (see, e.g., [23]), and specifically for
sinusoidal components in [24]. We extend on these works by exploiting the harmonic structure of the signals
in a block sparse framework, where each block represents a candidate pitch. A similar method was introduced
in [13], where block sparsity was enforced using block-norms, penalizing the number of active pitches. As the
block-norm penalty, under some circumstances, cannot distinguish a true pitch from its sub-octave, i.e., the
pitch with half the true fundamental frequency, the method is also complemented by a total variation penalty,
which is shown to solve such issues. Total variation penalties are often applied in image analysis to obtain
block-wise smooth image reconstructions (see, e.g., [25]). For audio data, one can similarly assume that
signals often are block-wise smooth, as the harmonics of a pitch are expected to be of comparable magnitude
[19]. Enforcing this feature will specifically deal with octave errors, i.e., the choosing of the sub-octave
instead of the true pitch, as, in the noise free case, only every other harmonic of the sub-octave will have
non-zero power. In this paper, we show that a total variation penalty, in itself, is enough to enforce a block
sparse solution, if utilized efficiently. More specifically, by making the penalty function adaptive, we may
improve upon the convex approximation used in [13], allowing us to drop the block-norm penalty altogether,
and so reduce the number of tuning parameters. In some estimation scenarios, e.g., when estimating chroma
using the approach in [26], this would simplify the tuning procedure significantly. Furthermore, we show that
the proposed method performs comparably to that of [13], albeit with the notable improvement of requiring
fewer tuning parameters. The method operates by solving a series of convex optimization problems, and
to solve these we present an efficient algorithm based on the alternating directions method of multipliers
(ADMM) (see, e.g., [27] for an overview of ADMM in the context of convex optimization). As the proposed
method requires two tuning parameters to operate, we also present a scheme for automatic selection of
appropriate model orders, thereby avoiding the need of user-supplied parameters. The remainder of this
work is organized as follows; in the following section, we introduce the signal model, followed in Section 3
by the proposed estimation algorithm. Section 4 summarizes the efficient ADMM implementation whereas
Section 5 examines how to adaptively choose the regularization parameters. Numerical results illustrating
the achieved performance are presented in Section 6. Finally, Section 7 concludes upon the work.

1It may be noted that, generally, obtaining correct model order information is a most challenging problem, with the model
order estimates strongly affecting the resulting performance of the estimator.
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2. Signal model

Consider a complex-valued2 signal consisting of K pitches, where the kth pitch is constituted by a set of
Lk harmonically related sinusoids, defined by the component having the lowest frequency, ωk, such that

x(t) =

K∑
k=1

Lk∑
`=1

ak,`e
iωk`t (1)

for t = 1, . . . , N , where ωk` is the frequency of the `th harmonic in the kth pitch, and with the complex
number ak,l denoting its magnitude and phase. The occurrence of such harmonic signals is often in com-
bination with non-sinusoidal components, such as, for instance, colored broadband noise or non-stationary
impulses. In this work, only the narrowband components of the signal are part of the signal model, such
that all other signal structures, including the signal’s timbre and the background noise, are treated as part
of an additive noise process, e(t).

[Figure 1 about here.]

In general, selecting model orders in (1) may be a daunting task, with both the number of sources, K, and
the number of harmonics in each of these sources, Lk, being unknown, as well as often being structured such
that different sources may have spectrally overlapping overtones. In order to remedy this, this work proposes
a relaxation of the model onto a predefined grid of P � K candidate fundamentals, each having Lmax ≥
maxk Lk harmonics. Here, Lmax should be selected to ensure that the corresponding highest frequency
harmonic is limited by the Nyquist frequency, and could thus vary depending on the considered candidate
frequency (see also [13]). For notational simplicity, we will hereafter, without loss of generality, use the same
Lmax for all candidate frequencies. Assume that the candidate fundamentals are chosen so numerous and so
closely spaced that the approximation

x(t) ≈
P∑
p=1

Lmax∑
`=1

ap,`e
iωp`t (2)

holds reasonably well. As only K pitches are present in the actual signal, we want to derive an estimator
of the amplitudes ap,` such that only few, ideally

∑K
k=1 Lk, of the amplitudes in (2) are non-zero. This

approach may be seen as a sparse linear regression problem reminiscent of the one in [24] and has been
thoroughly examined in the context of pitch estimation in, e.g., [13, 29, 30]. For notational convenience,
define the set of all amplitude parameters to be estimated as

Ψ =
{
Ψω1

, . . . ,ΨωP

}
(3)

Ψωp
=
{
ap,1, . . . , ap,Lmax

}
(4)

where, as described above, most of the ap,` in Ψ will be zero. Note that Ψ will be sparse, i.e., having
few non-zero elements. Also, the pattern of this sparsity will be group wise, meaning that if a pitch with
fundamental frequency ωp is not present, then neither will any of its harmonics, i.e., Ψωp

= 0. Due to
the harmonic structure of the signal, candidate pitches having fundamental frequencies at fractions of the
present pitches fundamentals will have a partial fit of their harmonics. This may cause misclassification, i.e.,
erroneously identifying a present pitch as one or more non-present candidate pitches. This is the cause of
the so-called sub-octave problem, which is mistaking the true pitch with fundamental frequency ωp for the
candidate pitch with fundamental frequency ωp/2. This may occur if the candidate set Ψ is structured such
that the sub-octave pitch may perfectly model the true pitch, which is when Lmax ≥ 2Lp. This is illustrated
in Figure 1, displaying an extreme case with a pitch with fundamental frequency 100 Hz and four harmonics
and as well as its sub-octave, i.e., a pitch with fundamental frequency 50 Hz and eight harmonics where only
the even-numbered harmonics are non-zero. Relating to music signals, this is the same as mistaking a pitch
for the pitch an octave below it. Thus, when estimating the elements of Ψ, one also has to take into account
the structure of the block sparsity, in order to avoid erroneously selecting sub-octaves.

2For notational simplicity and computational efficiency, we here use the discrete-time analytical signal formed from the
measured (real-valued) signal (see, e.g., [9, 28]).
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3. Proposed estimation algorithm

Consider N samples of a noise-corrupted measurement of the signal in (1), y(t), such that it may be
well modeled as y(t) = x(t) + e(t), where e(t) is a broadband noise signal. A straightforward approach to
estimate Ψ would then be to minimize the residual cost function

g1(Ψ) =
1

2

N∑
t=1

∣∣∣∣∣y(t)−
P∑
p=1

Lmax∑
`=1

ap,`e
iωp`t

∣∣∣∣∣
2

(5)

However, setting

Ψ̂ = argmin
Ψ

g1(Ψ) (6)

will not yield the desired sparsity structure of Ψ and will be prone to also model the noise e(t). Also,
solutions (6) will not be unique due to the over-completeness of the approximation (2). A remedy for this

would be to add terms penalizing solutions Ψ̂ that are not sparse, for example as

Ψ̂ = argmin
Ψ

g1(Ψ) + λ||Ψ||0 (7)

where ||Ψ||0 is the pseudo-norm counting the number of non-zero elements in Ψ, and λ is a regularization
parameter. However, this in general leads to a combinatorial problem whose complexity grows exponentially
with the dimension of Ψ. To avoid this, one can approximate the `0 penalty by the convex function

g2(Ψ) =

P∑
p=1

Lmax∑
`=1

|ap,`| (8)

The resulting problem

min
Ψ

g1(Ψ) + λg2(Ψ) (9)

is known as the LASSO [31]. In fact, it can be shown that under some restrictions on the set of frequencies ω,
(see also [32]), the LASSO is guaranteed to retrieve the non-zero indices of Ψ with high probability, although

these conditions are not assumed to be met here. To encourage the group-sparse behavior of Ψ̂, one can
further introduce

g3(Ψ) =

P∑
p=1

√√√√Lmax∑
`=1

|ap,`|2 (10)

which is also a convex function. The inner sum corresponds to the `2-norm, and does not enforce sparsity
within each pitch, whereas instead the outer sum, corresponding to the `1-norm, enforces sparsity between
pitches. Thereby, adding the g3(Ψ) constraint will penalize the number of non-zero pitches. The resulting
estimator was in [13] termed the Pitch Estimation using Block Sparsity (PEBS) estimator. However, if we
for some p have 2Lp ≤ Lmax, the above penalties have no way of discriminating between the correct pitch
candidate ωp and the spurious sub-octave candidate ωp/2. However, as the candidates will differ in that the
sub-octave will only contribute to the harmonic signal at every other frequency in the block, as was seen in
Figure 1, one may reduce the risk of such a misclassification by further adding the penalty

ğ4(Ψ) =

P∑
p=1

Lmax∑
`=0

∣∣∣∣|ap,`+1| − |ap,`|
∣∣∣∣ (11)

where we define

ap,0 = ap,Lmax+1 = 0 ,∀p (12)
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which would add a cost to blocks where there are notable magnitude variations between neighboring har-
monics. Unfortunately, (11) is not convex, but a simple convex approximation would be

g̃4(Ψ) =

P∑
p=1

Lmax∑
`=0

∣∣ap,`+1 − ap,`
∣∣ (13)

which would be a good approximation of (11) if all the harmonics had similar phases. This estimator was
in [13] termed the PEBS-TV estimator. Clearly, this may not be the case, resulting in that the penalty in
(13) would also penalize the correct candidate. An illustration of this is found by considering the worst-case
scenario, when all the adjacent harmonics are completely out of phase and have the same magnitudes, i.e.,
ap,`+1 = ap,`e

iπ with magnitude |ap,`| = r, for ` = 1, . . . , Lp − 1. Then, the penalty in (13) will yield a cost
of g̃4(Ψωp

) = 2rLp rather than the desired ğ4(Ψωp
) = 2r. The cost may also be compared with that of (8),

which is g2(Ψωp
) = rLp, suggesting that this would add a relatively large penalty. More interestingly, for the

sub-octave candidate pitch, the cost will be just as large, i.e., if ωp′ = ωp/2, then g̃4(Ψωp′ ) = 2rLp provided
that Lmax ≥ 2Lp, thereby offering no possibility of discriminating between the true pitch and its sub-octave.
Such a worst case scenario is just as unlikely as all harmonics having the same phase, if assuming that the
phases are uniformly distributed on [0, 2π). Instead, the g̃4 penalty of the true pitch will be slightly smaller
than its sub-octave counterpart, on average, and together with (10), the scales tip in favour of the true pitch,
as shown in [13]. One may thus conclude that the combination of g3 and g̃4 provides a block sparse solution
where sub-octaves are usually discouraged. However, it should be noted that such a solution requires the
tuning of two functions to control the block sparsity. This work proposes to simplify the PEBS-TV estimator
by improving the approximation in (13), by using an adaptive penalty approach. In order to do so, let ϕp,`
denote the phase of the component with frequency ωp,`, and collect all the phases in the parameter set

Φ =
{
Φω1

, . . . ,ΦωP

}
(14)

Φωp
=
{
ϕp,1, . . . , ϕp,Lmax

}
(15)

The penalty function in (11) may then instead be approximated as

g4(Ψ,Φ) =

P∑
p=1

Lmax∑
`=0

∣∣ap,`+1e
−iϕp,`+1 − ap,`e−iϕp,`

∣∣ (16)

thus penalizing only differences in magnitude, given that the phases ϕp,`+1 have been chosen as to offset phase
differences between the harmonics. In order to do so, the phases ϕk,` need to be estimated as the arguments
of the latest available amplitude estimates ak,`. As a result, (16) yields an improved approximation of (11),
avoiding the issues of (13) described above, and also promotes a block sparse solution. The block sparsity
is promoted due to the introduction of zero amplitudes in (12). In effect, this introduces a penalty for
activating a pitch block. As a result, the block-norm penalty function g3 may be omitted, which simplifies
the algorithm noticeably. Thus, we form the parameter estimates by solving

Ψ̂ = arg min
Ψ

g1(Ψ) + λ2g2(Ψ) + λ4g4(Ψ,Φ) (17)

where λ2 and λ4 are user-defined regularization parameters that weigh the importance of each penalty
function with that of the residual cost. To form the convex criteria and to facilitate the implementation,
consider the signal expressed in matrix notation as

y =
[
y(1) ... y(N)

]T
(18)

=

P∑
p=1

Wp ap + e , Wa + e (19)

where
W =

[
W1 . . . WP

]
(20)

Wp =
[

z1p . . . zLmax
p

]
(21)

zp =
[
eiωp1 . . . eiωpN

]T
(22)

a =
[

aT1 . . . aTP
]T

(23)

ap =
[
ap,1 . . . ap,Lmax

]T
(24)
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where the powers in the vectors zkp are taken element-wise. The dictionary matrix W is constructed by P
horizontally stacked blocks, or dictionary atoms Wp, where each is a matrix with Lmax columns and N rows.
In order to obtain an acceptable approximation of (11), the problem must be solved iteratively, where the
last solution is used to improve the next. To pursue an even sparser solution, a re-weighting procedure is
simultaneously used for g2(Ψ), similar to the one used in [33]. Redefining the functions gj to operate on
matrices, the solution is thus found at the k-th iteration as

â(k) = argmin
a

1

2

∥∥∥y −H
(k)
1 a

∥∥∥2
2

+ λ2

∥∥∥H(k)
2 a

∥∥∥
1

+ λ4

∥∥∥H(k)
4 a

∥∥∥
1

(25)

where

H
(k)
1 = W (26)

H
(k)
2 = diag

(
1/
(∣∣∣â(k−1)

∣∣∣+ ε
))

(27)

H
(k)
4 = F diag

(
arg
(
â(k−1)

))−1
(28)

where diag(·) denotes a diagonal matrix formed with the given vector along its diagonal, | · | is element-wise
absolute value, arg(·) is the element-wise complex argument, and ε � 1. If the magnitude of a certain

component of â(k−1) is small, the construction of H
(k)
2 will ensure that the magnitude of the corresponding

component of â(k) will be penalized harder. This iterative re-weighting procedure will then be a sequence of
convex approximations of a non-convex logarithmic penalty on the `1 norm of a. The inclusion of ε is made to
ensure that a division by zero is avoided. Also, I denotes the identity matrix, and F is a P (Lmax+1)×PLmax

matrix F = diag(F1, . . . ,FP ), where each block Fp is a (Lmax + 1)× Lmax matrix with elements

fk,` =


1 if k = ` = 1

−1 if k = `, ` 6= 1

1 if k = `+ 1

0 otherwise

(29)

As intended, the minimization in (25) is convex, and may be solved using one of many publicly available
convex solvers, such as, for instance, the interior point methods SeDuMi [34] or SDPT3 [27]. However,
these methods are quite computationally burdensome and will scale poorly with increased data length and
larger grids. Instead, we here propose an efficient implementation using ADMM. The problem in (25) may
be implemented in a similar manner as was done in [25], requiring only two tuning parameters, λ2 and λ4.
The proposed method compares to the PEBS and PEBS-TV algorithms as improving upon the former, and
requiring fewer tuning parameters than the latter. The proposed method is therefore termed a light and
improved version of PEBS, here denoted the PEBSI-Lite algorithm.

4. ADMM implementation

In order to solve (25), we proceed to introduce an efficient ADMM implementation. To this end, let
z ∈ CPLmax be the primal optimization variable and introduce the auxiliary variables u1 ∈ CN , u2 ∈ CPLmax ,
and u4 ∈ CP (Lmax+1) and let

G(k) =
[

H
(k)T
1 H

(k)T
2 H

(k)T
4

]T
(30)

u =
[

uT1 uT2 uT4
]T

(31)

Thus, we want to solve

min
z
f(G(k)z) (32)

where

f(G(k)z) =
1

2

∥∥∥y −H
(k)
1 z

∥∥∥2
2

+ λ2

∥∥∥H(k)
2 z

∥∥∥
1

+ λ4

∥∥∥H(k)
4 z

∥∥∥
1

(33)
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Algorithm 1 The proposed PEBSI-Lite algorithm

1: initiate k := 0, H
(0)
1 = I, H

(0)
4 = F, and

â(0) = zsave = dsave = 0PLmax×1

2: repeat {adaptive penalty scheme}
3: initiate j := 0, u2(0) = â(k),

z(0) = zsave, and d(0) = dsave

4: repeat {ADMM scheme}
5: z(j) =

(
G(k)HG(k)

)−1
G(k)H

(
u(j) + d(j)

)
6: u1(j + 1) = y+µζ1(j)

1+µ

7: u2(j + 1) = T
(
ζ2(j), λ2

µ

)
8: u4(j + 1) = T

(
ζ4(j), λ4

µ

)
9: d(j + 1) = u(j + 1)− ζ(j)

10: j ← j + 1
11: until convergence
12: store â(k) = u2(end), zsave = z(end), and dsave = d(end)

13: update H
(k+1)
2 = diag

(
1/
∣∣â(k)

∣∣+ ε)
)
, H

(k+1)
4 = F diag

(
arg
(
â(k)

))−1
14: k ← k + 1
15: until convergence

Using the auxiliary variabel u, one may equivalently solve

min
z,u

f(u) +
µ

2

∥∥∥G(k)z− u
∥∥∥2
2

subject to G(k)z− u = 0

(34)

where µ is a positive scalar, as the added term is zero for any feasible point. The Lagrangian can be succinctly
expressed using the (scaled) dual variable

d =
[

dT1 dT2 dT4
]T

(35)

where d1 ∈ CN , d2 ∈ CPLmax , and d4 ∈ CP (Lmax+1). By completing the square, the Lagrangian of the
problem can be equivalently expressed as

Lµ(z,u,d) = f(u) +
µ

2

∥∥∥G(k)z− u− d
∥∥∥2
2
− µ

2
‖d‖22 (36)

Also, define

ζ(j) =
[
ζT1 (j) ζT2 (j) ζT4 (j)

]T
(37)

where

ζ`(j) = H
(k)
` z(j + 1)− d`(j) , ` = 1, 2, 4 (38)

The Lagrangian (36) is separable in the variables z, u1, u2, and u4 and one may thus form an updating
scheme similar to that in [25], as

z(j + 1) = argmin
z

∥∥∥G(k)z− u(j)− d(j)
∥∥∥2
2

(39)

u1(j + 1) = argmin
u1

1

2
‖y − u1‖22 +

µ

2
‖ζ1(j)− u1‖22 (40)

u2(j + 1) = argmin
u2

λ2 ‖u2‖1 +
µ

2
‖ζ2(j)− u2‖22 (41)

u4(j + 1) = argmin
u4

λ4 ‖u4‖1 +
µ

2
‖ζ4(j)− u4‖22 (42)

d(j + 1) = u(j + 1)− ζ(j) (43)
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The updates of z and u1 are given by

z(j + 1) =
(
G(k)HG(k)

)−1
G(k)H

(
u(j) + d(j)

)
(44)

and

u1(j + 1) =
y + µζ1(j)

1 + µ
(45)

respectively. Using the element-wise shrinkage function,

T (x, ξ) =
max(|x| − ξ, 0)

max(|x| − ξ, 0) + ξ
� x (46)

where the max function operates on each element in the vector x separately and � denotes element wise
multiplication, one may update u2 and u4 as

u2(j + 1) = T

(
ζ2(j),

λ2
µ

)
(47)

and

u4(j + 1) = T

(
ζ4(j),

λ4
µ

)
(48)

respectively. The resulting PEBSI-Lite algorithm is summarized in Algorithm 1, where the solution is given
as â = â(kend) with kend denoting the last iteration index of the outer loop. The complexity of the resulting
algorithm will be dominated by the computation of step 5 in Algorithm 1. This system of equations can be
solved efficiently by storing the Cholesky factorization of the matrix to be inverted, with a one-time cost of
O(p3) operations, where p denotes the number of variables (here, assumed to be larger than the number of
data points). Furthermore, at each iteration, one needs to perform a back solve costing O(p2) operations.

5. Self-regularization

The quality of the pitch estimates produced by the PEBSI-Lite algorithm depend on the values of the
regularization parameters λ2 and λ4. In general, large values of λ2 encourage sparse solutions while large
values of λ4 encourage solutions that are smooth within blocks. As the model order is unknown, it is
generally hard to determine how sparse the solution should be in order to be considered the desired one.
Therefore, one often determines the values of the regularization parameters using cross-validation schemes,
making the performance of the methods user dependent. Instead, one would like to have a systematic and
preferable automatic method for choosing λ2 and λ4, and thereby the model order. A common approach to
solving model order problems is to use information criteria such as AIC or BIC [35], which measure the fit
of the model to the data, while penalizing high model orders, resulting in a trade-off criterion that should
take its optimal value for the correct model order. For the LASSO problem, there have been suggestions of
appropriate model order criteria [36], [37]. In [13], the authors suggest a BIC-style criterion for multi-pitch
estimation for given regularization parameters. However, this criterion can only be used to determine which
of the found pitches are true and which are spurious, and not to determine the appropriate regularization
parameters. Thus, even if one has an efficient criterion for choosing between different models, one first has
to form a set of candidate models, in effect running Algorithm 1 for different values of λ2 and λ4. For the
simpler case of the LASSO, the analog is to solve (9) for all λ ∈ R+, for which there are algorithms such as
LARS [38]. There have also been methods suggested to solve the LASSO for only a finite number of values
λ, i.e., only values of the regularization parameter where the number of active components of the solution
change (see, e.g., [37]). For our problem, the analog is to find solutions for the set of parameter values

{(λ2, λ4)|(λ2, λ4) ∈ R+ ×R+} (49)

[Figure 2 about here.]
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For the real-variable counterpart of the here considered pitch estimation problem, known as the Sparse
Fused LASSO [39], there have been algorithms suggested for computing the whole solution surface. In [40],
the authors present an elegant way of finding a solution path for the case of the dictionary W being the
identity matrix, meaning that the estimated amplitude vector is just a smoothed version of the signal y. The
algorithm can be used for general matrices W, under the condition that W has full column rank, something
that is not true for dictionaries in high-resolution spectral estimation applications such as the one considered
here. In [41], the authors present an approach to find the solution path of

min
β

1

2
‖y −Wβ‖22 + λ ‖Dβ‖1 (50)

for the real-variable case with a general penalty matrix D by considering the solution paths of the dual
variable. Unfortunately, this is only for the one-dimensional case, i.e., for the case when the minimization
has only a single regularization parameter.

Despite the above efficient ADMM implementation, it is computationally cumbersome to conduct a search
on (49) in order to find an appropriate model order, with the computation complexity increasing both in the
case of longer signals, and when using more elements in the dictionary. Instead of constructing a fully general
path algorithm for PEBSI-Lite, we therefore proceed to propose a scheme for constructing a reduced size
signal adapted dictionary that combined with a parametrization of the regularization parameters (λ2, λ4) will
allow us to form good pitch estimates without having to predefine values of the regularization parameters,
by means of a simple line search instead of searching through (49). The proposed dictionary construction
begins by estimating the frequency content of the signal without imposing any harmonic structure. This
estimation may be performed by any standard method, such as ESPRIT (see, e.g., [42]). As the number
of sinusoidal components is unknown, estimates corresponding to different model orders can be evaluated
using, for instance, the BIC criterion (see, e.g., [35])

BICk = 2N log σ̂2
k + (5k + 1) logN (51)

where σ̂2
k is the maximum likelihood estimate of the residual variance corresponding to the model constituted

by k estimated sinusoids, in order to choose a suitable model order. The accuracy of the frequency estimates
produced by ESPRIT will suffer if a too low model order is determined, whereas it is less sensitive to
cases when the model order is moderately overestimated. Thus, we propose to increase the robustness of the
frequency estimates by using k+δ, δ ≥ 1, estimated sinusoids for the case when order k is determined optimal
by the BIC. As the only interesting pitch candidates are those having at least one harmonic corresponding
to a present sinusoidal component, we can then design a considerably reduced dictionary, containing only
pitches with such matching harmonics. If one has some prior knowledge of the nature of the signal, one
could impose stronger assumptions on the candidate pitches in order to reduce the dictionary further, e.g.,
by allowing only pitches whose first harmonic is found in the set of estimated sinusoids. Using the obtained
dictionary, one could then proceed to conduct a search for λ2 and λ4. Although considerably cheaper as
compared to when performed using a full dictionary, a complete evaluation of the λ2λ4-plane is still somewhat
expensive. To avoid a full grid search, the following heuristic concerning the connection between λ2 and λ4
can be used. Assume that we have a single-pitch signal where all Lk harmonics have equal magnitude r.
Further, assume that when setting λ4 = 0, λ′ is the largest value of λ2 resulting in a nonzero solution, where
each harmonic amplitude is estimated to r0. If we would instead set λ2 = 0, and consider which value of λ4
that should result in the same solution, this value should be

λ4 =
Lk
2
λ′ (52)

as this would result in precisely the same penalty as with λ4 = 0, λ2 = λ′. More compactly, we have that

λ2 = αλ′ , λ4 = (1− α)
Lk
2
λ′ (53)

yields the penalty λ′ Lkr0 for all α ∈ [0, 1]. If we assume (53) to be true, we should, for spectrally smooth
signals, expect to see ridges in the solution surface where the number of pitches present in the solution
changes, and the shapes of the ridges in the λ2λ4-plane should be described by lines similar to (53). This is
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Algorithm 2 Self-Regularized PEBSI-Lite

1: initiate ` = 1
2: repeat {sinusoidal component estimation}
3: ω̂` ← ` sinusoidal components from ESPRIT
4: BIC` ← 2N log σ̂2(ω̂`) + (5`+ 1) logN
5: until BIC` > BIC`−1
6: ω̂`+δ ← `+ δ sinusoidal components from ESPRIT, where δ ≥ 1 is a safety margin
7: construct dictionary W from ω̂`+δ
8: L← largest number of active harmonics among candidate pitches in W
9: initiate λ = ε, k = 1

10: σ̂2
y ← Var(y)

11: σ̂2
MLE ← maximum likelihood (least squares) estimate of noise power

12: repeat {regularization parameter line search}
13: λ2 ← λ, λ4 ← L

2 λ

14: form amplitude estimate â(k) from Algorithm 1
15: estimate the power of the model residual σ̂2(λ2, λ4)
16: λ← λ+ ε
17: k ← k + 1
18: until

(
σ̂2(λ2, λ4)− σ̂2

MLE

)
> τσ̂2

y

19: â← â(k−1)

illustrated in Figure 2, presenting a plot of the number of pitches present in the solution for different values
(λ2, λ4) for a signal consisting of three pitches with fundamental frequencies 400, 550 and 700 Hz, and with
4, 8, and 12 harmonics, respectively. The magnitude of each harmonic amplitude has been drawn uniformly
on (0.9, 1.1) and each phase has been drawn uniformly on (0, 2π). The signal was sampled at frequency
20 kHz in a time frame of length 40 ms, generating 800 samples of the signal. The Signal-to-Noise Ratio
(SNR), as defined in (56), was 20 dB. On the plateau with two pitches, the pitch with four harmonics have
been forced to zero, whereas on the plateau with one pitch present, only the pitch with twelve harmonics is
present. Note the shape of the different plateaus: seen in the λ2λ4-plane, the slopes of the ridges seem to
be well described by (53) where Lk = 4, 8, and 12, for the three ridges corresponding to changes from three
to two, from two to one, and from one to zero pitches, respectively. The signal corresponding to Figure 2
has a relatively low level of noise. Increasing the noise level, the least regularized solutions, i.e., with λ2 and
λ4 close to zero, results in more than three non-zero pitches. Guided by this observation, one could reduce
the search for (λ2, λ4) from a 2-D to a 1-D search by using a re-parametrization. Keeping the plateaus
in Figure 2 and our assumption of spectral smoothness in mind, we should expect a desirable solution to
correspond to a (λ2, λ4)-pair with λ2 ≤ λ4. In order to get solutions regularized with respect to spectral
smoothness, while keeping the risk of getting only zero solutions low, the following parametrization can be
used. Let λ denote the only free parameter and set

λ2 = λ (54)

λ4 =
L

2
λ (55)

where L is the largest number of harmonics among the pitches present in the signal. Although L is unknown,
it can be estimated during the dictionary construction phase using the BIC and ESPRIT estimates, permit-
ting us to conduct a line search for the value of λ. Having obtained a solution with PEBSI-Lite using the
regularization parameter λ, the residual power σ2

λ can be estimated by least squares. It is worth noting that
in low noise environments, it can be expected that false pitches modeling noise will not contribute much to
the signal power. Thus, the first significant rise in residual power is expected to occur when one of the true
pitches are set to zero. Therefore, we propose keeping only models that correspond to lower values of σ2

λ

and then choosing the optimal model as the one having the least number of active pitches. The complete
algorithm for the dictionary construction, line search, and pitch estimation is outlined in Algorithm 2, where
ε denotes the step size of the line search and τ ∈ (0, 1) is a threshold for detecting an increase in model
residual power. The step size ε can be chosen based on afforded estimation time, as small values of ε will
result in more steps for the line search. τ can be chosen based on estimates of the noise power, if available.
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6. Numerical results

We proceed to examine the performance of the proposed algorithm using signals simulated from the pitch
model (1) as well as synthetic audio signals generated from MIDI, and measured audio signals.

6.1. Two-pitch signal

We initially examine a simulated dual-pitch signal, measured in white Gaussian noise at different SNRs
ranging from −5 dB to 20 dB in steps of 5 dB. The SNR is here defined as

[Figure 3 about here.]

[Table 1 about here.]

SNR = 10 log10

σ2
x

σ2
e

(56)

where σ2
x and σ2

e is the power of the signal and the noise, respectively. For a pitch signal generated by (1),
under the simplifying assumption of distinct sinusoidal components, the power of the signal is given by

σ2
x =

K∑
k=1

Lk∑
`=1

|ak,`|2

2
(57)

At each SNR, 200 Monte Carlo simulations were performed, each simulation generating a signal with fun-
damental frequencies of 600 and 730 Hz. As PEBS and PEBS-TV rely on a predefined frequency grid, the
fundamental frequencies were randomly chosen at each simulation uniformly on 600 ± d/2 and 730 ± d/2,
where d is the grid point spacing, to reflect performance in present of off-grid effects. The phases of the
harmonics in each pitch were chosen uniformly on [0, 2π), whereas all had unit magnitude. The signal was
sampled at fs = 48 kHz on a time frame of 10 ms, yielding N = 480 samples per frame. As a result, the
pitches were spaced by approximately fs/N Hz, which is the resolution limit of the periodogram. This is also
seen in Figure 3, illustrating the resolution of the periodogram as well as the frequencies of the harmonics,
at SNR = −5 dB. From the figure, it may be concluded that the signal contains more than one harmonic
source, as the observed peaks are not harmonically related. Furthermore, it is clear that the fundamental
frequencies are not separated by the periodogram, indicating that any pitch estimation algorithm based on
the periodogram would suffer notable difficulties. For PEBSI-Lite, the estimates are formed using Algo-
rithm 2 with τ = 0.1 and ε = 0.05. The safety margin for the sinusoidal model order is δ = 1. For PEBS and
PEBS-TV, the estimation procedure is initiated using a coarse dictionary, with candidate pitches uniformly
distributed on the interval [280, 1500] Hz, thus also including ωp/2 and 2ωp for both pitches. The coarse
resolution was d = 10 Hz, i.e., still a super-resolution of fs/10N . After estimation on this grid, a zooming
step was taken where a new grid with spacing d/10 was laid ±2d around each pitch having non-zero power.
The regularization parameter values used for PEBS-TV and PEBS are presented in Table 1. The values
where selected using manual cross-validation for similar signals. Comparisons were also made with the
ANLS, ORTH, and the harmonic Capon estimators, which had been given the oracle model orders (see [9]
for more details on these methods). The simulation and estimation procedure was performed for two cases;
one where the number of harmonics Lk were set to 5 and 6, and one where Lk were set to 10 and 11. In the
former case, Lmax = 10 and in the latter Lmax = 20, i.e., well above the true number of harmonics. Figures 4
and 5 show the percentage of pitch estimates where both lie within ±2 Hz from the true values for the six
compared methods, for the case of 5 and 6 as well as 10 and 11 harmonics, respectively. In this setting,
PEBS performs poorly, as the generous choices of Lmax allows it to pick the sub-octave, as predicted. As can
be seen in Figure 4, PEBSI-Lite performs better than all reference methods for SNRs above and including
10 dB despite not having the model order information given to

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]
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[Figure 7 about here.]

ORTH, ANLS, and Capon, nor having the supervised regularization parameters choices of PEBS and PEBS-
TV. Though, in higher noise settings, the performance of PEBSI-Lite degrades and its pitch frequency
estimates are worse than those produced by the reference methods for SNRs below 10 dB. For the case of 10
and 11 harmonics, PEBSI-Lite performs on par with the reference methods for SNRs above and including 15
dB, while performing worse in higher noise settings. As shown in Figures 6 and 7, the drop in performance
for lower SNRs results from the difficulty of accurately estimating the total number of sinusoids, as used
by the ESPRIT step, for such signals. In Figure 6, the percentage of the estimates in which the the BIC
criterion (51) correctly determines the number of sinusoidal components in the signal is presented, whereas
Figure 7 shows the percentage of the estimates in which the BIC criterion (51) determines a too low model
order. As is clear from the figures, the model order estimates strongly degrade for lower SNRs, thus causing
the PEBSI-Lite dictionary to be inaccurate. Clearly, all the other methods here shown using oracle model
order information would suffer drastically from such inaccuracies, although it should be stressed that one
may expect these methods to suffer further, as they also need to perform an exhaustive combinatorial search
to determine the number of pitches given the found number of sinusoids.

6.2. Three-pitch signal

To further examine the performance of Algorithm 2, it was evaluated using a simulated triple-pitch signal,
measured in white Gaussian noise at different SNR levels, ranging from 0 dB to 25 dB, in steps of 5 dB.
Instead of using unit magnitudes of the harmonics, as was the case for the above presented two-pitch setting,
the spectral envelopes of the three pitch components were constructed from periodograms of three different
speech recordings. The formants of the three pitches are displayed in Figure 8. The pitches had fundamental
frequencies 200, 350, and 530 Hz, and 7, 8, and 11 harmonics, respectively. At each level of SNR, 1000 Monte
Carlo simulations were performed, where the fundamental frequencies were chosen uniformly on 200 ± 2.5,
350 ± 2.5, and 530 ± 2.5 Hz, respectively, and the phase of each harmonic was chosen uniformly on [0, 2π).
The signal was sampled in a 40 ms window at a sampling frequency of 20 kHz, generating 800 samples of
the signal. The algorithm settings were τ = 0.1, ε = 0.05, and δ = 1. Here, Algorithm 2 was compared to
the ANLS, ORTH, harmonic Capon, as well as PEBS-TV estimators. The three first comparison methods
were given the oracle model orders. To illustrate the fact that the choice of regularization parameter values
is not universal, the values found using cross-validation for the two-pitch case (see Table 1) were used for
PEBS-TV initially. However, this resulted in such poor performance that the parameter values had to be
slightly altered in order to make PEBS-TV an interesting reference method. As a compromise, the parameter
values corresponding to SNR 20 dB in Table 1 were used for all SNRs in this simulation setting.

[Figure 8 about here.]

[Figure 9 about here.]

For the dictionaries of PEBSI-Lite and PEBS-TV, Lmax = 16 was used, well above the true model orders.
Figure 9 shows the percentage of the pitch estimates where all three pitch estimates lie within ±2 Hz of
the true values for the five different methods. As can be seen, the performance of PEBSI-Lite is again poor
for low SNRs while improving considerably for lower noise levels. The low scoring for PEBSI-Lite for low
SNRs is mainly due to the selection of wrong model orders. This is illustrated in Figure 10, which shows
the percentage of the estimates in which PEBSI-Lite and PEBS-TV selects the correct number of pitches.
As can be seen, for an SNR of 0 dB, PEBSI-Lite selects the true model order in less than 10% of the
simulations. Mostly, a too high model order is selected, which is to be expected as the model order choice
is based on the power of the model residual and that the pitch estimates depend on the accuracy of the
initial ESPRIT estimates. Arguably, one could improve on these results by either using prior knowledge of
the noise level or by estimating it, and based on this make the model order selection scheme more robust.
Figure 11 shows the root mean squared error (RMSE) for the estimated fundamental frequencies. Instead
of presenting three separate RMSE plots, Figure 11 shows an aggregate version where the MSE for the
three pitches have been summed. In order to compute relevant RMSE values for PEBSI-Lite and PEBS-TV,
estimates where the model order has not been correctly determined have been discarded. Thus, for an SNR
level of 0 dB, the RMSE values for PEBSI-Lite is based on quite few samples. However, as PEBSI-Lite finds
the correct model order for high SNR levels with high probability, the corresponding RMSE values are more
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trustworthy in these regions. For the reference methods ORTH, ANLS, Capon, and PEBS-TV, some of the
estimates deviate from the true pitch frequencies with as much as 100 Hz, resulting in very large RMSE
values should all estimates be used in their computation. Thus, in order to obtain RMSE values comparable
to that of the PEBSI-Lite estimates, only estimates found within 2 Hz of the true pitch frequencies are used
when computing RMSE for the reference methods. With this, as can be seen in Figure 11, PEBSI-Lite
performs worse than the reference methods for SNRs below and including 10 dB, while outperforming all
reference methods except Capon for SNRs above and including 20 dB. Though, one should bear in mind
that the RMSE values for Capon for these SNRs are based on only 15% respectively 8% of the available
pitch estimates, as can be seen in Figure 9, and that the Capon method has been allowed oracle model order
knowledge. Also presented in Figure 11 is the root Cramér-Rao lower bound (CRLB) for the estimates of
the pitch frequencies. As the frequencies of the harmonics in this case are distinct and the additive noise is
white Gaussian, the lower limit for the variance of an unbiased pitch frequency estimate f̂k is given by [9]

Var(f̂k) ≥ 6σ2(fs/2π)2

N(N2 − 1)
∑Lk

`=1 |ak,`|2`2
(58)

where σ2 is the power of the additive noise, ak,` is the amplitude of harmonic ` of pitch k, N is the number
of data samples, and fs is the sampling frequency. In analog with the summed MSE values for the pitch
estimates, the root CRLB curve presented here is the sum of the three separate limits, i.e.,

CRLB =

3∑
k=1

6σ2(fs/2π)2

N(N2 − 1)
∑Lk

`=1 |ak,`|2`2
(59)

As can bee seen in Figure 11, PEBSI-Lite, as well as the other methods, fail to reach the CRLB. In an
attempt to improve the PEBSI-Lite estimates for SNR levels above and including 15 dB, a non-linear least
squares (NLS) search was performed, using the presented algorithm estimate as and initial estimate of all
the unknown parameters, including the model orders. This means that we obtain refined estimates of the
pitch frequencies fk contained in the vector f as (see, e.g, [42])

f = argmax
f

yHB(BHB)−1BHy (60)

where B is a block matrix consisting of K blocks,

B = [B1, . . . ,BK ] (61)

where each block Bj corresponds to a separate pitch and is constructed as

Bj =

e
i2πfj/fst1 . . . ei2πLjfj/fst1

...
...

ei2πfj/fstN . . . ei2πLjfj/fstN

 (62)

Given that the PEBSI-Lite estimates are fairly close to the true pitch frequencies, we expect the NLS
scheme to converge if we solve (60) using routines like MATLAB’s fminsearch initialized with the PEBSI-
Lite estimates. However, the success of such a scheme is not only dependent on good initial frequency
estimates, we also need the true number of harmonics Lj for each pitch. Figure 12 presents a plot of the
average absolute error in the number of detected harmonics for each pitch for the test signal when using
PEBSI-Lite. As can be seen, the number of detected harmonics is only correct for the third pitch even
for the largest SNRs. The errors in number of harmonics for the first and second pitches are due to the
relatively small amplitudes of both pitches highest order harmonics, as shown in Figure 8, making these
harmonics prone to occasionally being cancelled out by the PEBSI-Lite regularization penalties. Using
erroneous harmonic orders as input to the NLS search, we expect the resulting pitch frequency estimates
to be somewhat biased. Indeed, this is what happens. Figure 13 presents a plot of the RMSE of the pitch
frequency estimates when the PEBSI-Lite estimates for SNRs above and including 15 dB have been post-
processed using NLS. As can be seen, the estimator still fails to reach the CRLB, although the estimation
errors have become smaller. Note also that the slopes of the RMSE curve for PEBSI-Lite and CRLB are
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now somewhat different, which is due to that the erroneous harmonic orders induces varying degrees of bias
in the estimates. Considering computational complexity, ANLS and ORTH are by far the fastest methods,
with average running times of 0.03 and 1.6 seconds per estimation cycle on a regular PC, respectively. For
Capon and PEBS-TV, the corresponding running times are 6.1 and 6.4 seconds for the considered example,
respectively, while running PEBSI-Lite using Algorithm 2 requires on average 40.1 seconds per estimation
cycle. As a comparison, it may be noted that if one replaces Algorithm 1 in Algorithm 2 to instead use
SeDuMi or SDPT3, the computation time for this step of Algorithm 2 increases almost tenfold3.

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]

[Figure 18 about here.]

Although Algorithm 2 is considerably more expensive to run than the reference methods, it should be noted
that the method does not require any user input in terms of regularization parameter values. PEBS-TV
could arguably be tuned to perform on par with PEBSI-Lite if one is allowed to change the values of its
regularization parameters. However, PEBS-TV needs the setting of three parameter values and after trying
only seven such triplets, the computational time is the same as running Algorithm 2 in its entirety.

6.3. MIDI and measured audio signals

Figure 14 shows a plot of the spectrogram of a signal consisting of three MIDI-saxophones playing notes
with fundamental frequencies 311, 277, and 440 Hz. The signal was sampled initially at 44 kHz and then
down sampled to 20 kHz. The 311 Hz saxophone starts out alone and is after 0.45 seconds joined by the 277
Hz saxophone and after 0.95 seconds by the 440 Hz saxophone. The image is quite blurred for the later parts
of the signal, but for the first half second, one can clearly see the harmonic structure of the saxophone pitch.
It is worth noting that a large number of harmonics is present. Figure 15 shows pitch estimates produced by
Algorithm 2, using τ = 0.1 and Lmax = 15, when applied to the same signal, using windows of lengths 40 ms.
As can be seen, the estimates are quite accurate, with the exception of the beginning of the first tone and for
a single frame where the 440 Hz pitch is mistaken for a 220 Hz pitch. It is worth noting that such errors may
be avoided using the information resulting from earlier frames, for instance using an approach similar to [22].
The figure also shows the estimated pitch tracks obtained using the ESACF estimator [43]; this estimator
requires a priori knowledge of the number of sources in the signal, but is, given this information, able to
estimate the number of harmonics of each source. Here, EACF has thus been provided oracle knowledge of
the number of sources, with each source given the same maximum harmonic order as used by PEBSI-Lite (as
before, the latter also has to estimate the number of sources). As can be seen from the figure, the ESACF
estimator fails to track the pitches in several of the frames. In particular, it fails to estimate the pitch with
fundamental frequency 440 Hz altogether.

Furthermore, Figure 16 examines the performance of the PEBSI-Lite estimator when applied to a mea-
sured audio signal. The considered signal consists of three trumpets playing the notes A4, B4, and C#4,
which, using concert tuning, corresponds to the fundamental frequencies 440, 493.883, and 554.365 Hz, re-
spectively. However, it should be noted, that as the musicians play with vibrato, the fundamental frequencies

3For all algorithms, the given execution times are those of direct implementations of the corresponding methods. Clearly,
these methods can be more efficiently implemented by fully exploiting their inherent structures.
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are not constant across the frames, which may also be seen in the resulting estimates. To facilitate for a com-
parison, the ground truth estimates of the fundamental frequencies have been obtained using the joint order
and (single) pitch estimation algorithm ANLS, presented in [11], when applied to each individual trumpet
separately. As a comparison, the figure also shows the three fundamental frequencies obtained using the
ESACF estimator (which has here, again, been allowed oracle knowledge of the number of sources, but using
the same maximum number of harmonics as used by PEBSI-Lite). As can be seen, PEBSI-Lite accurately
tracks each of the three pitches, even catching the pitch variations caused by the vibrato. As before, it may
be noted that the estimates produced by ESACF have lower accuracy as compared to PEBSI-Lite, with
the ESACF estimator here erroneously picking one of the sub-octaves in some of the frames. The trum-
pet signal was sampled at 8 kHz. The pitch estimates where formed in non-overlapping frames of length 30ms.

The performance of PEBSI-Lite and ESACF on real audio was also evaluated on the Bach10 dataset [44].
This dataset consists of ten string quartets composed by Johann Sebastian Bach. The parts are performed
by a violin, a clarinet, a saxophone, and a bassoon, with each piece being approximately 30 seconds long.
Each piece was sampled at 44.1 kHz, then downsampled to 22.05 kHz, and divided into non-overlapping
frames of length 30 ms. Estimates of the ground truth fundamental frequencies in each frame were obtained
by applying YIN [45] to each individual channel. Obvious errors in the YIN estimates were then corrected
manually. As before, to yield its best possible performance, ESACF was given oracle knowledge of the
number of present pitches and both methods were given a maximum harmonic order of 15. For PEBSI-Lite,
τ = 0.1 was used. Table 2 presents the resulting measures of the accuracy, precision, and recall for the
dataset, defined as

Accuracy =

∑I
i=1

∑Ti

t=1 TP(t, i)∑I
i=1

∑Ti

t=1 TP(t, i) + FP(t, i) + FN(t, i)
(63)

Precision =

∑I
i=1

∑Ti

t=1 TP(t, i)∑I
i=1

∑Ti

t=1 TP(t, i) + FP(t, i)
(64)

Recall =

∑I
i=1

∑Ti

t=1 TP(t, i)∑I
i=1

∑Ti

t=1 TP(t, i) + FN(t, i)
(65)

where TP(t, i), FP(t, i), and FN(t, i) denote the number of true positive, false positive, and false negative
pitch estimates, respectively, for frame t in music piece i. Furthermore, Ti is the number of frames for music
piece i, whereas I is the number of music pieces. Here, an estimated pitch is associated with a ground truth
pitch only if its fundamental frequency lies within a quarter tone, or 3%, of the ground truth pitch (see
also, e.g., [46]). To avoid the most non-stationary frames, where we cannot expect the estimates produced
by PEBSI-Lite and ESACF, nor the ground truth, to be reliable, frames containing note onsets, defined as
frames where one of the ground truth pitches change with more than a semi-tone, have been excluded when
computing the measures. As can be seen from the table, PEBSI-Lite performs better than ESACF for all of
the three considered measures accuracy, precision, and recall. As PEBSI-Lite does, for now, not incorporate
information between adjacent frames, these results are most promising for what might be achievable when
extended to include such information. As an illustration of the performance, Figures 17 and 18 present pitch
tracks produced by PEBSI-Lite and ESACF when applied to the first 15 seconds of one of the pieces in the
dataset, namely Ach, lieben Christen. As can be seen from the figures, PEBSI-Lite tracks the fundamental
frequencies of the violin, the saxophone, and the bassoon fairly well, while having trouble with the clarinet.
This problem is caused by the shape of the spectral envelope of the clarinet, as it is dominated by a large
peak at the fundamental frequency, with very weak overtones, and thus deviates from the here used model
assumption of spectral smoothness. It may also be noted that PEBSI-Lite has better performance at the
stationary parts of the signal, while producing more erroneous estimates at note on- and offsets due to
quickly changing spectral content. The ESACF estimator on the other hand has serious problems tracking
the violin and clarinet, often picking sub-octaves estimates instead of the correct pitch, although being able
to track the saxophone and bassoon fairly well.

[Table 2 about here.]
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7. Conclusions

The proposed algorithm PEBSI-Lite has been shown to be an accurate method for multi-pitch estimation.
The method was shown to perform as good as, or better than, state-of-the-art methods. As compared to
related methods, the presented algorithm requires fewer regularization parameters, simplifying the calibration
of the method. Furthermore, the work introduces an adaptive dictionary scheme for determining suitable
regularization parameters. Combined with this scheme, PEBSI-Lite was shown to outperform other multi-
pitch estimation methods for high levels of SNR, while breaking down in too noisy settings. However, even
if this scheme would fail to select the correct model order, the obtained efficient dictionary facilitates a more
rigorous grid search in terms of computational complexity. Such a grid search could also exploit information
about the solution surface obtained from the line search. Using an additional refinement step, the proposed
algorithm is found to yield estimates reasonably close to being efficient, if considering that the method has
not been allowed any knowledge of the model order of the signal.
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Figure 1: The upper picture depicts a pitch with fundamental frequency 100 Hz and four harmonics. The lower picture depicts
a pitch with fundamental frequency 50 Hz and eight harmonics where all odd-numbered harmonics are zero (marked red dots).
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Figure 2: Number of pitches, K, present in the solution of PEBSI-Lite for different values (λ2, λ4) when applied to a three pitch
signal with 4, 8, and 12 harmonics, respectively.
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Figure 4: Percentage of estimated pitches where both fundamental frequencies lie at most 2 Hz, or d/5 = 1/50N , from the
ground truth, plotted as a function of SNR. Here, the pitches have [5, 6] harmonics, respectively, and Lmax = 10.
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Figure 5: Percentage of estimated pitches where both fundamental frequencies lie at most 2 Hz, or d/5 = 1/50N , from the
ground truth, plotted as a function of SNR. Here, the pitches have [10, 11] harmonics, respectively, and Lmax = 20.
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Figure 8: Magnitudes for the harmonics of the three pitches constituting the test signal for the Monte Carlo simulations.
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Figure 10: Estimated probability of PEBSI-Lite determining the correct number of pitches for the triple pitch test signal.
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Figure 13: The RMSE for the fundamental frequency estimates where the estimates obtained using PEBSI-Lite have been
improved using NLS for SNR levels 15, 20, and 25 dB, as compared to the (root) CRLB. Only estimates where the number of
pitches is found are considered.
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Figure 14: Spectrogram for a signal consisting of one, two and lastly three MIDI-saxophones playing notes with fundamental
frequencies 311, 277, and 440 Hz, respectively.
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Figure 15: Pitch tracks for a signal consisting of one, two, and lastly three MIDI-saxophones playing notes with fundamental
frequencies 311, 277, and 440 Hz, respectively.
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Figure 16: Pitch tracks produced by PEBSI-Lite as well as ESACF when applied to a triple-pitch signal consisting of three
trumpets. The ground truth has been obtained using ANLS applied to the single source signals.
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Figure 17: Pitch tracks produced by PEBSI-Lite when applied to first 15 seconds of J.S. Bach’s Ach, lieben Christen, performed
by a violin, a clarinet, a saxophone, and a bassoon. The ground truth has been obtained using YIN applied to the single source
signals.
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Figure 18: Pitch tracks produced by ESACF when applied to the first 15 seconds of J.S. Bach’s Ach, lieben Christen, performed
by a violin, a clarinet, a saxophone, and a bassoon. The ground truth has been obtained using YIN applied to the single source
signals.
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SNR (dB) -5 0 5 10 15 20

PEBS-TV
λ2 0.2 0.2 0.2 0.15 0.1 0.1
λ3 0.3 0.3 0.3 0.2 0.2 0.15
λ4 0.1 0.1 0.1 0.75 0.75 0.05

PEBS
λ2 0.2 0.2 0.2 0.15 0.15 0.1
λ3 0.4 0.4 0.4 0.3 0.3 0.2

Table 1: Regularization parameter values for PEBS-TV and PEBS.
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PEBSI-Lite ESACF
Accuracy 0.466 0.363
Precision 0.641 0.776

Recall 0.631 0.406

Table 2: Performance measures for PEBSI-Lite and ESACF when evaluated on the Bach10 dataset.
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