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Model problem
®00

A standard equation

Let Q C RY, d € {1,2}. We are looking for u € H'(f2) such that

—Au=f inQ,
u =up on I'p,
0

a%:q on 'y,

where 9Q :=TpUTy, f € L*(Q), up € H/*(I'p) and
q € HV2(I'y).
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Model problem
ceo

A weaker version

Let v € HH(2) C H'(2). We have that

/va:/Q(—Au)v
0
/vv%/g

Using the boundary conditions, we arrive at

/Vu-Vv:/fv+/ qu
Q Q INY

a(u,v) = F(v) + Q(v) Yo € HH(9).

or, equivalently,
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Model problem

[e]e] ]

Our problem

Take up =0 and I'y = (. Now we are looking for u € Hj(Q)

such that
/Vu'Vv:/fv
Q Q

a(u,v) = F(v) Vo € HY () (WF)

or, equivalently,

Lax-Milgram lemma

Let V' be a real Hilbert space and a: V' x V — R a continuous
bilinear form that is V-coercive with constant «. Then, for all
F € V' there exists a unique u € V such that

a(u,v) = F(v) Yo e V.

Furthermore, |lul| <o~ |F|.
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The Finite Element method
©00000

The Galerkin method

To approximate u € V, we consider a sequence of finite

dimensional subspaces V; C V5 C ... such that Uﬁle V, =V and
find the solution u, € V,, of

a(un,vp) = F(vp) Yoy, € V, (DF)

such that this sequence satisfies lim,,_,« ||u — uy| = 0.

If now we implement the systematic approach of dividing our
subdomain 2 in a family of discretizations {2} >0 and let our
subspaces be spaces of polynomials P*, we have what we call a
finite element method.
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The Finite Element method
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The Galerkin method (1)

Since V}, is finite dimensional, we can take a basis {qﬁj};\f:l and
solve the Galerkin system

AB=TF,
where A;; = a(¢j, ¢;), F; = F(¢;) and B = (b1, ..., )" is such
that up, = Z;\le ﬂjgﬁj.

In some contexts, they call A the stiffness matrix, F' the load
vector and 3 the degrees of freedom.
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The Finite Element method
008000

The Galerkin method (III)

For example, take €2 =]0,1[ and a partition x; = ih with

0 < h < 1. Let V}, be the space of continuous functions that are
polynomials of degree 1 when restricted to [x;, z;4+1].

Consider a basis {qﬁj};\f:l such that ¢;(z;) = 0;;. We call these
functions hat functions because of their shape and notice that ¢;

is supported only on [zj_1, ;1]

Figure: Image from [SCB08]
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The Finite Element method
[eYeteY Yolo)

The Galerkin method (IV)

We have that

2/h  ifli—j|>1
a(qﬁj,qﬁi): —l/h if |i—j|:1
0 if i —j]>1

and so we end up solving the system

B1 S

o /3. :
N IN-

-1 2

A more thorough explanation of implementation can be found in

[ACF99].
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The Finite Element method
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A Finite Element

Definition (Classical, [Cia02, SCBO08])
A finite element is a triple (K, P, N') where

@ K C R" is a compact set with nonempty interior and
piece-wise smooth boundary (the element domain),

@ P is a finite dimensional space of functions on K (the space
of shape functions) and

o N ={&,...,&n} is a basis of P’ (the degrees of freedom.)

V

23

L, L,

2y Ls ) -

Fig. 3.1. linear Lagrange triangle Fig. 8.2. Crouzeix-Raviart noncon-
forming linear triangle
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The Finite Element method
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A Finite Element (I1)

Definition (Unisolvency)

Aset N ={&,...
t=1,...,d implies v = 0. If d = dim P, then N is a basis of P’. )

,€a} C P’ is called unisolvent if &;(v) = 0 for

Definition (Nodal basis)

The nodal basis is the basis {¢1,...,¢n} of P dual to NV, that is,

§i(¢i) = dij.

V.
Definition (Local interpolant)

Given (K, P,N), we define the local interpolant by

N
I = ) &i(v)9;.
j=1
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Error estimates
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Error in H'-norm

Since u is a solution of the original weak problem and V}, C V, it
follows that a(u,vy) = F(vy) for all v, € V}, and so we conclude:

Theorem (Galerkin orthogonality)

Let uw and uy, be the solutions of (WF) and (DF), respectively.
Then

CL(’U, — Uh, Uh) =0

for all vy, € Vj,.

Theorem (Céa’s lemma)

We have that

M
— < — inf ||lu— .
e —unlly < = inf Jlu—vly
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Error estimates
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Error in H'-norm (1I)

Theorem (Bramble-Hilbert lemma [Bra07])

Let t > 2 and suppose 2y, is a regular discretization of ). Then
there exists a constant C' independent of m such that

lu = Zull,, , < CH ™" Jul, g

for all w € H'(Q) and 0 < m < t, where T denotes interpolation
by a piecewise polynomial of degree t — 1.
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Error estimates
[efeY Ye¥o)

Error in H-norm (III)

Consider the P! Lagrange element. We can use the
Bramble-Hilbert lemma to deduce that

flu — IU”LQ < Ch |U|2Q :

Then, since the interpolant projects onto the space V}, we have
Tu € V}, and so, from Céa's lemma,

B
lu—unllo < — llu=Tull; o S hlullsq-

And finally, if we possess some (say, elliptic) regularity with
f € L?(£2), we can arrive at

[ = unlly o = O(h).
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Error estimates
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Error in L2-norm

Theorem (Aubin-Nitsche [Bra07])

Let H be a Hilbert space w.r.t. norm ||-|| and V C H be a
subspace which is also Hilbert under another norm |-|. In addition,
let V. — H be continuous.

Then, the finite element solution of (DF) satisfies

1
||u—Uhr\gcru—uh|sup{ f |y v|},
AV E AL

where for every g € H, p, € V denotes the corresponding unique
weak solution of

CL(’U),(ﬁg) = (ng) YweV.
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Error estimates
[eletetel )

Error in L?-norm (II)

In our setting, we have that H}(Q) — L?() and so

—1 .
lu—unllpo < Cllu—unll,q sup {Ilgllo,g inf Hsog—v\lm}
geL?(Q) vEV)

-1
<hllulag s {llgloh b lollog )
geEL?(Q)
<12 Jul

and so
lu = unllg g = O(h?).
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Error estimates
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