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A standard equation

Let Ω ⊂ Rd, d ∈ {1, 2}. We are looking for u ∈ H1(Ω) such that

−∆u = f in Ω,

u = uD on ΓD,

∂u

∂ν
= q on ΓN ,

where ∂Ω := ΓD ∪ ΓN , f ∈ L2(Ω), uD ∈ H1/2(ΓD) and
q ∈ H−1/2(ΓN ).
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A weaker version

Let v ∈ H1
D(Ω) ⊂ H1(Ω). We have that∫

Ω
fv =

∫
Ω
(−∆u)v

=

∫
Ω
∇u · ∇v −

�
�
�
��>

0∫
ΓD

∂u

∂ν
v −

∫
ΓN

∂u

∂ν
v.

Using the boundary conditions, we arrive at∫
Ω
∇u · ∇v =

∫
Ω
fv +

∫
ΓN

qv

or, equivalently,

a(u, v) = F (v) +Q(v) ∀v ∈ H1
D(Ω).
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Our problem

Take uD ≡ 0 and ΓN = ∅. Now we are looking for u ∈ H1
0 (Ω)

such that ∫
Ω
∇u · ∇v =

∫
Ω
fv

or, equivalently,

a(u, v) = F (v) ∀v ∈ H1
0 (Ω) (WF)

Lax-Milgram lemma

Let V be a real Hilbert space and a : V × V → R a continuous
bilinear form that is V -coercive with constant α. Then, for all
F ∈ V ′ there exists a unique u ∈ V such that

a(u, v) = F (v) ∀v ∈ V.

Furthermore, ∥u∥ ≤ α−1 ∥F∥.
5 / 16



Model problem The Finite Element method Error estimates

The Galerkin method

To approximate u ∈ V , we consider a sequence of finite

dimensional subspaces V1 ⊂ V2 ⊂ ... such that
⋃N

n=1 Vn = V and
find the solution un ∈ Vn of

a(un, vh) = F (vh) ∀vh ∈ Vn (DF)

such that this sequence satisfies limn→∞ ∥u− un∥ = 0.
If now we implement the systematic approach of dividing our
subdomain Ω in a family of discretizations {Ωh}h>0 and let our
subspaces be spaces of polynomials Pk, we have what we call a
finite element method.
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The Galerkin method (II)

Since Vh is finite dimensional, we can take a basis {ϕj}Nj=1 and
solve the Galerkin system

Aβ = F,

where Aij = a(ϕj , ϕi), Fi = F (ϕi) and β = (β1, . . . , βN )t is such

that uh =
∑N

j=1 βjϕj .
In some contexts, they call A the stiffness matrix, F the load
vector and β the degrees of freedom.
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The Galerkin method (III)

For example, take Ω =]0, 1[ and a partition xi = ih with
0 < h < 1. Let Vh be the space of continuous functions that are
polynomials of degree 1 when restricted to [xi, xi+1].
Consider a basis {ϕj}Nj=1 such that ϕj(xi) = δij . We call these
functions hat functions because of their shape and notice that ϕj

is supported only on [xj−1, xj+1].

Figure: Image from [SCB08]
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The Galerkin method (IV)

We have that

a(ϕj , ϕi) =


2/h if |i− j| > 1

−1/h if |i− j| = 1

0 if |i− j| > 1

and so we end up solving the system

1

h


2 −1

−1 2
. . .

. . .
. . . −1
−1 2


β1

...
βN

 =

 f1
...

fN .


A more thorough explanation of implementation can be found in
[ACF99].
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A Finite Element

Definition (Classical, [Cia02, SCB08])

A finite element is a triple (K,P,N ) where

K ⊂ Rn is a compact set with nonempty interior and
piece-wise smooth boundary (the element domain),

P is a finite dimensional space of functions on K (the space
of shape functions) and

N = {ξ1, . . . , ξN} is a basis of P ′ (the degrees of freedom.)

Figure: Image from [SCB08]
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A Finite Element (II)

Definition (Unisolvency)

A set N = {ξ1, . . . , ξd} ⊂ P ′ is called unisolvent if ξi(v) = 0 for
i = 1, . . . , d implies v ≡ 0. If d = dimP, then N is a basis of P ′.

Definition (Nodal basis)

The nodal basis is the basis {ϕ1, . . . , ϕN} of P dual to N , that is,
ξj(ϕi) = δij .

Definition (Local interpolant)

Given (K,P,N ), we define the local interpolant by

IK :=

N∑
j=1

ξj(v)ϕj .
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Error in H1-norm

Since u is a solution of the original weak problem and Vh ⊂ V , it
follows that a(u, vh) = F (vh) for all vh ∈ Vh and so we conclude:

Theorem (Galerkin orthogonality)

Let u and uh be the solutions of (WF) and (DF), respectively.
Then

a(u− uh, vh) = 0

for all vh ∈ Vh.

Theorem (Céa’s lemma)

We have that

∥u− uh∥V ≤ M

α
inf
v∈Vh

∥u− v∥V .
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Error in H1-norm (II)

Theorem (Bramble-Hilbert lemma [Bra07])

Let t ≥ 2 and suppose Ωh is a regular discretization of Ω. Then
there exists a constant C independent of m such that

∥u− Iu∥m,h ≤ Cht−m |u|t,Ω

for all u ∈ Ht(Ω) and 0 ≤ m ≤ t, where I denotes interpolation
by a piecewise polynomial of degree t− 1.
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Error in H1-norm (III)

Consider the P1 Lagrange element. We can use the
Bramble-Hilbert lemma to deduce that

∥u− Iu∥1,Ω ≤ Ch |u|2,Ω .

Then, since the interpolant projects onto the space Vh we have
Iu ∈ Vh and so, from Céa’s lemma,

∥u− uh∥1,Ω ≤ B

α
∥u− Iu∥1,Ω ≲ h ∥u∥2,Ω .

And finally, if we possess some (say, elliptic) regularity with
f ∈ L2(Ω), we can arrive at

∥u− uh∥1,Ω = O(h).

14 / 16



Model problem The Finite Element method Error estimates

Error in L2-norm

Theorem (Aubin-Nitsche [Bra07])

Let H be a Hilbert space w.r.t. norm ∥·∥ and V ⊂ H be a
subspace which is also Hilbert under another norm |·|. In addition,
let V ↪→ H be continuous.
Then, the finite element solution of (DF) satisfies

∥u− uh∥ ≤ C |u− uh| sup
g∈H

{
1

∥g∥
inf
v∈Vh

|φg − v|
}
,

where for every g ∈ H, φg ∈ V denotes the corresponding unique
weak solution of

a(w, ϕg) = (g, w) ∀w ∈ V.
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Error in L2-norm (II)

In our setting, we have that H1
0 (Ω) ↪→ L2(Ω) and so

∥u− uh∥0,Ω ≤ C ∥u− uh∥1,Ω sup
g∈L2(Ω)

{
∥g∥−1

0,Ω inf
v∈Vh

∥φg − v∥1,Ω

}
≲ h ∥u∥2,Ω sup

g∈L2(Ω)

{
∥g∥−1

0,Ω h ∥g∥0,Ω
}

≲ h2 ∥u∥

and so
∥u− uh∥0,Ω = O(h2).
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