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Abstract—In this work, we present a method for estimating
the parameters detailing an unknown number of linear, possibly
harmonically related, chirp signals, using an iterative sparse
reconstruction framework. The proposed method is initiated
by a re-weighted group-sparsity approach, followed by an it-
erative relaxation-based refining step, to allow for high resolu-
tion estimates. Numerical simulations illustrate the achievable
performance, offering a notable improvement as compared to
other recent approaches. The resulting estimates are found to be
statistically efficient, achieving the corresponding Cramér-Rao
lower bound.

Index Terms—Harmonic chirps, multi-component, Block spar-
sity, LASSO, Cramér-Rao lower bound

I. INTRODUCTION

MANY forms of everyday signals, ranging from radar
and biomedical signals to seismic measurements and

human speech, may be well modeled as signals with instanta-
neous frequencies (IF) that varies slowly over time [1]. Such
signals are often modeled as linear chirps, i.e., periodic signals
with an IF that changes linearly with time. Given the preva-
lence of such signals, much effort has gone into formulating
efficient estimation algorithms of the start frequency and rate
of development, and then, in particular, for signals only con-
taining a single (complex-valued) chirp. One noteworthy such
method is the phase unwrapping algorithm presented by Djuric
and Kay [2]; further development of this method can be found
in e.g. [3]. Other methods presented for single component
estimation are, for example, based on Kalman filtering [4], [5],
or sample covariance matrix estimates [6]. Similarly, in [7], the
authors utilized the idea of single chirp modeling in detecting
non-stationary phenomena in very noisy data. Recent work has
to a larger extent focused on also identifying multi-component
chirp signals, such as the maximum likelihood technique
presented in [8], the fractional Fourier transform method [9]–
[11], and the multitapered synchrosqueezed transform [12].
Others have used some Fourier based time-frequency estimate,
e.g, the Wigner-Ville distribution, the reassigned spectrogram,
or a Gabor dictionary, as a rough initial estimate, which
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may then be refined using image processing techniques to
fit a linear chirp model [13]–[15]. The latter methods seem
to render good estimates, although they typically require
rather large data sets to do so. The reassignment method will
yield perfect localization of the IF for each chirp component,
given enough noise-free observations. Regrettably, it is quite
sensitive to noise corruption [16]. Furthermore, in [17] a
LASSO-based framework to estimate linear chirp signals was
proposed that showed more robustness to noise as well as
allowed for estimating an unknown number of unrelated linear
chirps. Also, some efforts have been made to use a compressed
sensing approach [18], where a dictionary containing a small
number of chirps is formed and the final estimates are found
using an FFT-based algorithm. The size of the dictionary was
limited to the signal length, thus impairing the estimation
abilities. Also, the method did not allow for any modeling
of additional signal structure.

Often, the nonparametric methods have the advantage of
computational efficiency, but generally also suffer from the
poor resolution and high variance as is inherent to the spec-
trogram (see, e.g. [19]). The parametric methods on the other
hand often have good performance and resolution, but gener-
ally require a priori knowledge of the number of components
in the signal. Furthermore, it is not uncommon that one
also needs to have good initial estimates to be able to use
such methods; otherwise, the algorithm might suffer from
convergence problems.

Many naturally occurring signals show a harmonic structure,
i.e., a fundamental frequency with a number of overtones that
are integer multiples of the fundamental frequency. For such
signals there are many proposed algorithms (see e.g. [20]–
[22]). However, in many signals the signal structure suffers
from inharmonicities, such that the spectral components are
not exactly harmonic. Recently, two works have also examined
extensions to the case of a single source harmonic chirp,
containing a set of harmonically related chirps signals [23],
[24]. These signals have lately started to attract interest due to
their ability to model non-stationary harmonical signals, such
as many forms of audio signals [23]. In these works, both a
nonlinear least squares (NLS) [23] and a maximum likelihood
solution [24] were examined. In this work, we extend upon
and generalize the findings in [17], to account for an harmonic
structure, where both the number of sources and the number
of harmonic overtones for each source are unknowns, as well
as allow for the case when some of the harmonics are missing.
The algorithm requires very few samples to get an accurate
estimate of the parameters, which allows the method to also
model short segments of even highly non-linear chirp signals
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as being piecewise linear over each of the segments, yielding
a quite accurate local signal representation. Furthermore, as
long as the sampling times are known, the algorithm will
also handle irregularly sampled data. Typically, most existing
works rely on available a priori knowledge of the order of the
models, although such details are in general unavailable, and
are notoriously hard to estimate [21]. Recently, some efforts
on alleviating these assumptions have been made for purely
harmonic signals [22], wherein a block-sparse framework is
utilized to form the estimates. The here presented work extends
on these efforts, also allowing for inharmonic sources, using
the ideas introduced in [23]. We demonstrate the performance
of the proposed method using both real and simulated data,
and compare the results with the corresponding Cramér-Rao
lower bound (CRLB), which is also presented, as well as
with competing algorithms. To improve on the computational
complexity, we present an efficient implementation, utiliz-
ing the alternating direction method of multipliers (ADMM)
framework (see, e.g. [25]).

In this paper, scalars will be denoted with lower case
symbols, e.g. x, whereas vectors will be denoted with bold
lower case, x. Matrices will be denoted with bold upper case
letter, X . Furthermore, (·)T , (·)H , <, and = will be used to
denote the transpose, the conjugate transpose, the real part,
and the imaginary part, respectively.

The paper is structured as follows: In the next section,
we introduce the signal model for harmonic chirp signals.
Then, in section III, we derive the proposed algorithms and
present some heuristics for setting the user parameters. In sec-
tion IV, we present efficient implementations of the algorithms,
whereas in section V, we illustrate the available performance
of the introduced methods using numerical results. Finally, in
section VI, we conclude upon our work.

II. SIGNAL MODEL

Consider

y(t) =

K∑
k=1

Lk∑
`=1

αk,le
i2π`φk(t) + e(t), t = t0, . . . , tN−1 (1)

where K and Lk denote the unknown number of fundamental
chirps and the number of unknown harmonics for the kth
component, respectively, whereas N denotes the number of
available samples, t the sample times, which may be irregular,
αk the complex valued amplitude, φk(t) the time dependent
frequency function, and e(t) an additive noise term, here
assumed to be white, circularly symmetric, and Gaussian
distribution. Furthermore, the chirp signal is assumed to be
reasonable linear, at least under short time intervals, which
allows φk(t) to be modeled as

φk(t) = f0k t+
rk
2
t2 (2)

yielding the IF function

φ′k(t) = f0k + rkt (3)

where f0k and rk denote the starting frequency and the
frequency rate, i.e., the frequency slope of the chirp, for
chirp component k, respectively. The considered problem

consists of estimating K, Lk, f0k , and rk, as well as, in the
process, also the phase, ϕk,` , ∠αk,`, and the magnitude,
ak,` , |αk,`|. Finally, we assume that min {`φ′k(t)} ≥ 0 and
max {`φ′k(t)} ≤ Fs, ∀(k, `), where Fs denotes the sampling
frequency, in order to ensure that all frequencies in the signal
are observable, i.e., fulfilling the Nyquist-Shannon sampling
theorem.

III. ALGORITHM

In order to form an efficient algorithm for estimating the
unknown parameters in (1), one may rewrite (1) as

y = D̃ã + e (4)

where

y =
[
y(t0) . . . y(tN−1)

]T
(5)

ã =
[
α1,1 . . . α1,L1

. . . αK,LK

]T
(6)

D̃ =
[
d1,1 . . . d1,L1

. . . dK,LK

]
(7)

dk,` =
[
ei2π`φk(t0) . . . ei2π`φk(tN−1)

]T
(8)

and where e is formed in the same manner as y. To allow
for an unknown number of components, we expand the signal
representation in (4) into one formed using a large dictionary
containing P �

∑K
k=1 Lk candidate chirps, such that

y ≈Da (9)

where D is an N×P dictionary matrix, and a the correspond-
ing amplitudes, which thus mostly contains zeros, but with (at
least)

∑K
k=1 Lk non-zero elements. It is here assumed that P is

selected sufficiently large so that the corresponding dictionary
elements are close to the location of the true components and
also spans the the relevant parameter space, e.g. ranging from
0 to Fs for the starting frequency parameter (see also [26],
[27] for a related discussion). Solving (9) using ordinary least
squares, if feasible, would yield a non-sparse solution, i.e.,
most of the indexes of a would be non-zero. Instead, we here
impose the harmonic structure upon the solution by forcing it
to choose between the different candidate chirp groups, while
allowing for one or many of the overtones to be missing. To
impose this structure, we form the minimization

minimize
x

||y −Dx||22 + λ||x||1 + γ

Q∑
q=1

||x[q]||2 (10)

where x[q] selects all elements in x corresponding to block q
in D, and Q denotes the number of blocks considered, where
each block contains a fundamental chirp and its overtones, i.e.,
for block q, x[q] denotes the elements of x that corresponds
to [

dq,1 . . . dq,Lq

]
(11)

in the dictionary. The first term in (10) measures the distance
between the signal and the model, the second term enforces
an overall sparsity between the available chirp candidates and
thus limits the number of chirps that may be part of the
solution. The third term in (10) acts as a sparsity enhancer
for the number of harmonically related chirp groups that are
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allowed in the solution, thus promoting a solution that has
fewer number of activated groups. Together, the two last terms
in (10) promotes a solution that has few harmonically related
chirp groups, and also allows for chirps within a group to be
sparse.This optimization problem is convex as it is a sum of
convex functions, and the solution may thus be found using
standard interior-point methods, such as, e.g., SeDumi [28]
and SDPT3 [29]. Furthermore, γ and λ are tuning parameters
controlling the sparsity of the groups and the sparsity within
the groups, respectively. It is worth noting that if setting
γ = 0, one solves the problem of finding unrelated chirps
in the signal. Even though P is finely spaced, the quality
of the solution obtained from (10) will depend on the grid
structure of D, i.e., if the true components are not contained
in the dictionary, the components that are the closest to the
true chirps will be activated, ensuring that the corresponding
indices in x will be non-zero. Therefore, the solution attained
from (10) will be biased in accordance to the chosen grid
structure of D. To avoid this bias, the estimation procedure
involves an additional step consisting of a nonlinear least
squares (NLS) search to further increase the resolution. In
order to do so, let the residual from (10) be formed as

r = y −Dx (12)

Then, each harmonic chirp component may be iteratively
updated by first adding one component to the residual formed
in (12), conducting a NLS search for the parameter estimates,
initiated using the estimates found from (10), and then remove
the found component using (12). When all components have
been updated in this way, one may continue updating the
residual with the newly refined estimates. The final estimates
are found by iterating the entire refinement procedure a few
times.

In the above algorithm, the user has to select a value for
the parameters γ and λ. Of these, the value of γ penalizes the
number of harmonic chirps allowed in the solution, meanwhile
the value of λ penalizes the overall number of chirps, thus
allowing for sparsity within each harmonic chirp component.
The values of γ and λ are commonly chosen through cross-
validation [30], or by some data dependent heuristics. In the
case of γ = 0, we herein suggest selecting

λ =
||y||22
2N

(13)

which has empirically been shown to provide a reliable choice
of λ, for the here considered data lengths. When both tuning
parameters are active, the problem of setting good values
becomes more complicated, since the two penalties interact.
We have empirically found that, as long as λ is reasonably
small, one may use (13) as a rule of thumb for also setting γ.
To further increase the robustness to the choice of γ and λ,
and to further enhance the sparsity, we propose a re-weighted
approach, based on the technique introduced in [31]. In this
approach, one solves the minimization iteratively, where, at
every iteration, two weight matrices, W and V, with weights
w1, . . . , wP and v1, . . . , vQ on the diagonals and zeros

elsewhere, are used. The diagonal elements in W and V are

Algorithm 1 The HSMUCHES algorithm
1: Initiate wp = 1, for p = 1, . . . , P , and vq = 1,

for q = 1, . . . , Q
2: for b = 1, . . . do
3: Solve (16)
4: Update (14) and (15)
5: end for
6: Compute (12)
7: for j = 1,. . . do
8: for k = 1, . . . , K̂ do
9: z = r + D(·, IK̂(k))(j)x(IK̂(k))(j)

10: Using z, update D(·, IK̂(k))(j) and x(IK̂(k))(j) via
NLS

11: Subtract the refined estimates from z
12: end for
13: end for

updated as

w(b)
p =

1

|x(b−1)p |+ ε
, p = 1, . . . , P (14)

v(b)q =

(
1

||x(b−1)[q]||22 + ε

)1/2

, q = 1, . . . , Q (15)

where the superscript b denotes the iteration number, and ε > 0
is a small offset parameter, which prevents the solution from
diverging. At each iteration, one thus solves

minimize
x

||y −Dx||22 + λ||W (b)x||1 + γ

Q∑
q=1

v(b)q ||x[q]||2

(16)

The resulting algorithm is outlined in Algorithm 1, where
D(·, k) and x(k) denote the kth column and the kth index
of the matrix D and the vector x, respectively. Furthermore,
let K̂ denote the number of non-zero elements in the solution
from (10), and let the corresponding indices in x make up the
index set IK̂ . Clearly, one must select an appropriate stopping
criteria for the second loop in Algorithm 1. This may be done
in various ways, such as when the parameter estimates does
no longer improve significantly in each iteration, or by setting
a maximum number of iterations. Empirically, we found that
10 iterations where enough for convergence and through out
this work, we used this as stopping criteria. It should be noted
that the re-weighted approach introduces the tuning parameter
ε. In this paper, we have set ε to be

ε =
N

||y||22
(17)

which is in accordance with the discussion in [31], and which
has been empirically shown to yield reliable estimates.

It should be noted that if γ = 0, the estimator does
not assume any harmonic structure, and therefore constitutes
solely a multi-chirp estimator; we term this the Sparse MUlti-
component Chirp EStimator (SMUCHES). In the case γ > 0,
the estimator also allows for the possibility of harmonic chirp
components; we term this the Harmonic Sparse MUlticompo-
nent Chirp EStimator (HSMUCHES).
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IV. EFFICIENT IMPLEMENTATION

We proceed to examine efficient implementations of the pro-
posed estimators using the ADMM framework. The discussion
here is focused on the HSMUCHES estimator, although the
implementation also works for the SMUCHES algorithm by
simply setting γ = 0. In general, an ADMM solves problems
in the form

minimize
x,z

f(x) + g(z)

subject to Ax + Bz = c (18)

In our case, A = I , B = −I , c = 0, f(x) = ||y −Dx||22,
and g(z) = λ||z||1 + γ

∑Q
q=1 ||z[q]||2, where I denotes the

identity matrix of size N ×P . The augmented Lagrangian for
this minimization is formed as

Lρ(x, z,u) = f(x) + g(z) +
ρ

2
||x− z + u||22 (19)

where u is the scaled dual variable, and ρ is the penalty
parameter, penalizing the distance between z and x. The
ADMM finds the solution to (16) by iteratively solving (19)
for each variable separately. The steps in the ADMM are

x(k+1) = argmin
x

(
f(x) +

ρ

2
||x− z(k) + u(k)||22

)
(20)

z(k+1) = argmin
z

(
g(z) +

ρ

2
||x(k+1) − z + u(k)||22

)
(21)

u(k+1) = x(k+1) − z(k+1) + u(k) (22)

To find the solution to (20), one differentiates (19) with respect
to x and put it equal to zero, yielding

x(k+1) =
(
DHD + ρI

)−1 (
DHy + ρ

(
z(k) − u(k)

))
(23)

To solve (21), one needs to take some further care as g(z) is
not differentiable at z = 0. However, it can be shown (see e.g.
[32]) that the solution to (21) is

z(k+1) = S
(
S
(
x(k+1) + u(k), λ/ρ

)
, γ/ρ

)
(24)

where S and S are soft thresholds defined as

S(x, κ) =
xj
|xj |

max(|xj | − κ, 0) (25)

S(x, κ) =
x[q]

||x[q]||2
max(||x[q]||2 − κ, 0) (26)

for q = 1, . . . , Q, where S should be interpreted element-
wise. Observing that f(x) and g(z) are closed, proper, and
convex functions, and given ρ > 0, then, under some mild
assumptions, if there is a solution to (16), then the algorithm
will converge to this solution [33], [34]. Also, the choice
of ρ will only effect the convergence rate, not whether or
not the method will converge. Using this implementation, the
computational complexity for SMUCHES is, for the Lasso
part, O(N3 + N2P ). The computations in this part are
dominated by (23), which only needs to be calculated once
throughout the minimization. Furthermore, the computational
complexity of the inverse is significantly decreased using the
Woodbury matrix identity [35]. The NLS part of the proposed
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Fig. 1. The figure shows the true (solid) and the estimated (dashed) IF.

algorithm requires a computational complexity of O(K̂NP ).

It may be noted that a dictionary similar to (7) was proposed
in [18]; in this case, the dictionary was restricted to only
contain N candidate chirps. As a result, the dictionary expe-
rienced low correlation between the columns, for which case
the restricted isometry properties (RIP) will hold, suggesting
that the signal may be recovered with high probability (see,
e.g., [36]). The same result would hold for the dictionary in
(7), if restricted in the same manner. However, to allow for
high resolution estimates, the dictionary should, as discussed,
be extended to contain many more chirp candidates, indicating
that the dictionary columns will be highly correlated, thereby
no longer satisfying the RIP. Fortunately, as is also shown
in the next section, practical evidence indicate that even
highly correlated dictionaries enjoy excellent signal recovery
properties.

V. NUMERICAL RESULTS

In order to evaluate the performance of the proposed algo-
rithms, we examine their behavior on both real and simulated
data, comparing them both to other alternative techniques, and
to the CRLB (as derived in Appendix A). All the following
root mean squared error (RMSE) curves are based on 1000
Monte Carlo simulations.

Initially, we examine a simulated uniformly sampled signal
of length N = 20, consisting of two non-harmonic chirp
components, as depicted in Figure 1, which is corrupted by
white circularly symmetric Gaussian noise with a signal to
noise ratio (SNR) of 10 dB, which is here defined as

SNR = 10log10

(
Py

σ2

)
(27)

where Py denotes the power of the signal, and σ2 the variance
of the additive noise. The resulting estimates from the pro-
posed SMUCHES method and for the reassigned spectrogram
[16] are shown in Figures 1 and 2, respectively. As can be seen
in Figure 2, the reassigned spectrogram finds the two chirp
components, but the estimates are blurred, as well exhibiting
jumps in the frequencies. On the other hand, as can be seen
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Fig. 2. The figure shows the estimated time-frequency distribution of the
chirp signals using the reassigned spectrogram.

in Figure 1, the proposed method manages to find the chirp
components without any such ambiguities.

We continue by showing how the proposed SMUCHES
method may be used in tracking a non-linear chirp. In this
example, we simulated an exponential chirp component de-
fined as

φ(t) =

(
rt − 1

log(r)

)
f0 (28)

where f0 and r are parameters determining the starting fre-
quency and the exponential rate of change, respectively. The
signal, containing N = 105 samples, was divided in 7 equally
sized sections, such that each segment may be reasonably well
modeled as a linear chirp. The signal was corrupted by a white
circularly symmetric Gaussian noise with SNR = 20 dB. The
proposed algorithm was applied on each signal segment. The
resulting chirp estimate is depicted in Figure 3, where it is
clearly shown how the proposed method manages to estimate
the evolving parameters of the non-linear chirp, showing that
the local linear approximation is valid.

Next, we examine the estimation performance of the
SMUCHES method as a function of SNR. In this example, the
simulated signal contains only a single chirp component, with
starting frequency f0 = 0.6/π, frequency rate r = 0.03/π,
amplitude α = 1, and a uniformly distributed random phase
ϕ ∈ U [− 1

2 ,
1
2 ), which was randomized for each simulation.

The sample length is set to N = 20.
Figures 4 and 5 show the RMSE of the SMUCHES esti-

mator, where λ and ε were selected using (13) and (17), as
well as the discrete chirp Fourier transform algorithm (DCFT)
[9], the algorithm presented by Djuric and Kay in [2], both
being allowed oracle knowledge of the number of chirps in the
signal, and the CRLB. It should be noted that the proposed
methods do not assume any model order information, as they
are estimating this as part of the optimization; clearly, this also
implies that the method may estimate the wrong model orders.
However, the proposed SMUCHES method only estimated
the wrong number of components in 1 out of the 1000
simulations, and this at the SNR = 5 dB level. For the other
SNR levels, the order estimations were without any errors. To
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Fig. 3. The estimated chirp in dashed lines as compared to the true chirp.
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Fig. 4. Performance of the proposed SMUCHES method, as compared with
the Djuric-Kay method, the DCFT method, and the CRLB, when estimating
the starting frequency of a single chirp.

assert a fair comparison, the simulation where the proposed
method estimated the wrong model order was removed from
all methods, and is thus not included in the RMSE graphs.
As is clear from Figures 4 and 5, the SMUCHES method,
without using any prior knowledge about the number of chirps,
manages to attain the CRLB, as well as outperforming the
Djuric-Kay algorithm, even though the latter has been allowed
oracle model order information. Furthermore, it can be seen
that the DCFT algorithm is stuck to its initial grid, which
suggests why it does not manage to improve beyond a certain
limit when the SNR increases. Examining the computational
complexities, it was found that the Djuric-Kay and the DCFT
algorithms (given oracle model orders) are notably faster
to compute than the presented SMUCHES implementation,
requiring on average (computed over 1000 simulations on a
regular PC, for SNR= 20 dB) 2.3 · 10−4, 5.1 · 10−3, and
5.0 · 10−1 seconds to execute, respectively.

We proceed by examining the performance on multicompo-
nent chirp signals. Since the competing methods, which we
previously compared with, cannot be used on multicomponent
data, we only show the results for the proposed method as
compared to the corresponding CRLB. Figure 6 depicts the
RMSE of the parameter estimations, as a function of SNR.
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Fig. 5. Performance of the proposed SMUCHES method, as compared
with the the Djuric-Kay method, the DCFT method, and the CRLB, when
estimating the frequency rate of a single chirp.

The starting frequency of the chirps were f01 = 0.6/π and
f02 = 1.2/π, and the slope rates were r1 = 0.03/π and
r2 = 0.09/π. The amplitudes were set to unity and the phase
were drawn as ϕ ∈ U [− 1

2 ,
1
2 ) at each simulation. Once again,

λ and ε were chosen using (13) and (17). As one can note from
Figure 6, the proposed method follows the CRLB for SNR
levels greater or equal to 10 dB. In this case, the proposed
method estimated the wrong model order 26 times out of the
1000 simulations, all for the SNR = 5 dB case, and not at
all for higher SNRs. Again, these simulations were removed
from the proposed method’s RMSE, and the CRLB was
adjusted correspondingly. Next, we examine the performance
on irregularly sampled data constituting of 20 observations
from a chirp signal with the same chirp components as in the
previous example. The sampling times where drawn from a
rectangular distribution in the range (0, 20] and are depicted
in Figure 7. The phase was drawn from U [− 1

2 ,
1
2 ) for each

simulation. Figure 8 shows the resulting RMSE results. As for
the earlier examples, for SNR greater than 5 dB, the proposed
method attains the CRLB. The main difference to the uniform
sampled case is that the resulting RMSE for SNR = 5 dB
is worse. Also, the number of times the proposed method
estimated the wrong model order increased to 51 times out
of 1000, again, only for the SNR = 5 dB case. As before, for
SNR greater than 5 dB, no errors in the model order estimation
were made. Though slightly more sensitive to non-uniformly
sampled data, it can be concluded that the proposed method
is suitable to use also for non-uniformed sampled data.

We proceed to examine the performance on simulated
harmonic data. The simulated chirp signal consist of one fun-
damental frequency and 3 overtones (K = 1 and L1 = 4), each
with unit amplitude and uniformly distributed random phase.
The fundamental starting frequency was set to f0 = 0.2∗3/π
and the frequency slope to r = −0.004 ∗ 3/π. The resulting
RMSE are shown in Figures 9 and 10, as a function of SNR,
when using N = 20 samples. The RMSEs for both the
starting frequency and the frequency slope, are measured as
mean value of the RMSE for each of the four components in
the signal, i.e., for the fundamental frequency and the two
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Fig. 6. Performance of the proposed SMUCHES method when estimating
the starting frequencies (top curves) and the frequency rates (bottom curves)
of two non-crossing linear chirps, as compared to the CRLB.
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overtones. Here, HSMUCHES estimated the wrong model
order 54 times out of 1000 at SNR = 5 dB, 5 times out
of 1000 at SNR = 10 dB, and made no mistakes at higher
SNRs.

As SMUCHES does not take the harmonicity inherent in
the signal in account, there are 18 parameters (model order,
noise variance, and four parameters for each component) to
estimate using only 20 samples, whereas HSMUCHES only
has to estimate twelve parameters (model order, number of
overtones, starting frequency, frequency slope, phase, noise
variance, and four amplitudes). As a result, it can be expected
that SMUCHES will make more order estimation mistakes
than HSMUCHES, which was also found to be the case. Out
of the 1000 simulations, SMUCHES made 906 model order
errors at SNR=5 dB, 261 at SNR=10 dB, 21 at SNR=15 dB,
8 at SNR = 20 dB, and 3 errors at SNR = 25 dB. The tuning
parameters for SMUCHES were selected using (13) and (17),
and for HSMUCHES γ using (13), with λ = 0, and ε = 10−4.
Finally, we show the performance on real data, containing
sounds from bats [37]. Many forms of audio sources, such
as voiced speech and many forms of music, may be well
modelled as harmonic signals. Thus, it should be expected
that the sound from a bat may contain a harmonic structure.



7

SNR (dB)
5 10 15 20 25

R
M

S
E

10-4

10-3

10-2

10-1

SMUCHES
CRLB

Fig. 8. Performance of the proposed SMUCHES method when estimating
the starting frequencies (top curves) frequency rates (bottom curves) of two
non-crossing linear chirps for irregularly sampled data, as compared to the
CRLB.

5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

R
M

S
E

 

 

HSMUCHES
SMUCHES
CRLB

Fig. 9. Performance of the proposed HSMUCHES methods applied to an
harmonic chirp signal with one fundamental frequency and three overtones,
as compared with the SMUCHES method and the CRLB, when estimating
the starting frequencies.

The spectrogram of the bat signal is shown in Figure 11,
suggesting that the signal contains one fundamental chirp
with, at most, two overtones. Figure 12 shows the estimated
harmonic structure when using HSMUCHES. Comparing the
figures, it is clear that the HSMUCHES algorithm is well
able to capture the changing frequencies in the harmonic
signal, achieving a substantially better resolution than the
spectrogram. As before, the tuning parameters for SMUCHES
were selected using (13) and (17), and for HSMUCHES, γ
was set to two times (13), λ = 0.01, and ε = 10−4.

VI. CONCLUSION

In this paper, we have proposed two semi-parametric algo-
rithms for estimating the parameters of an unknown number
of chirp and harmonic chirp components in noisy data, respec-
tively. The methods are shown to work well even for very short
signals, and allow for both uniform and non-uniform sampled
data. The methods are shown to attain the corresponding
CRLB for both cases. Furthermore, it is shown in the paper
that the methods can be also used to approximate non-linear
chirps, by dividing the data into small sections, in which the
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Fig. 10. Performance of the proposed HSMUCHES methods applied to an
harmonic chirp signal with one fundamental frequency and three overtones,
as compared with the SMUCHES method and the CRLB, when estimating
the frequency slopes.

Fig. 11. The figure shows the spectrogram of the bat chirp.

non-linear chirps can be assumed to be reasonably linear.
Numerical examples illustrate the preferable performance on
both real and simulated signals.
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APPENDIX A
CRAMÉR-RAO LOWER BOUND

The CRLB for a multi-component chirp signal has been
derived in multiple papers, see e.g. [8]. Here, we derive the
CRLB for the case of both regular frequencies and irregular
sampling, as well as harmonic overtones. The Fisher infor-
mation matrix (FIM) for any signal observed under complex
valued additive white noise, with variance σ2, can be set up
block-wise as

Jij =
2

σ2

N−1∑
n=0

(
∂<{y(tn)})

∂θi

∂<{y(tn)})
∂θj

+
∂={y(tn)})

∂θi

∂={y(tn)})
∂θj

)
(29)
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Fig. 12. The figure shows the estimated time-frequency content of the bat
signal using the proposed HSMUCHES algorithm.

where θk = [f0k , rk , ϕk,1 , ... , ϕk,Lk
, αk,1 , ... , αk,Lk

]T , Lk
is the number of harmonics, and αk,` is the kth amplitude of
the `th harmonic. Hence, the FIM will have (K ×K) blocks,
such that

J =


J11 J12 · · · J1K

J21 J22 · · · J2K

· · · · · ·
. . .

...
JK1 JK2 · · · JKK

 (30)

By denoting the Fisher information between the two parame-
ters u and v as

I(u, v) ,
∂<{y(tn)}

∂u

∂<{y(tn)}
∂v

+
∂={y(tn)}

∂u

∂={y(tn)}
∂v

(31)
each block in the FIM may be found as

Jkj =

2

σ2

N−1∑
n=0

 I (θk(1), θj(1)) · · · I (θk(1), θj(Mj))
...

. . .
...

I (θk(Mk), θj(1)) · · · I (θk(Mk), θj(Mj))



where Mk = 2 + 2Lk denotes the number of parameters for
the kth component. Defining

Ψk,`(tn) , 2π

(
`

(
f0k tn +

rk
tn
t2n

)
+ ϕk

)
(32)

and
∆Ψk,`,j,m(tn) , Ψk,`(tn)−Ψj,m(tn) (33)

each pairwise Fisher information is found as

I(fk, f
0
j ) =

Lk∑
`=1

Lj∑
m=1

αk,`αj,m4π2`mt2n cos ∆Ψk,`,j,m(tn)

I(f0k , rj) =

Lk∑
`=1

Lj∑
m=1

αk,`αj,m2π2`mt3n cos ∆Ψk,`,j,m(tn)

I(f0k , ϕj,m) =

Lk∑
`=1

αk,`αj,m4π2`tn cos ∆Ψk,`,j,m(tn)

I(f0k , αj,m) =

Lk∑
`=1

−αk2π`tn sin ∆Ψk,`,j,m(tn)

I(rk, f
0
j ) =

Lk∑
`=1

Lj∑
m=1

αk,`αj,m2π2`mt3n cos ∆Ψk,`,j,m(tn)

I(rk, rj) =

Lk∑
`=1

Lj∑
m=1

αk,`αj,mπ
2`mt4n cos ∆Ψk,`,j,m(tn)

I(rk, ϕj,m) =

Lk∑
`=1

αk,`αj,m2π2`t2n cos ∆Ψk,`,j,m(tn)

I(rk, αj,m) =

Lk∑
`=1

−αk,lπ`t
2
n sin ∆Ψk,`,j,m(tn)

I(ϕk, f
0
j ) =

Lk∑
`=1

Lj∑
m=1

αk,`αj,m4π2mtn cos ∆Ψk,`,j,m(tn)

I(ϕk, rj) =

Lk∑
`=1

Lj∑
m=1

αk,`αj,m2π2mt2n cos ∆Ψk,j,`,m(tn)

I(ϕk,`, ϕj,m) = αk,`αj,m4π2 cos ∆Ψk,`,j,m(tn)

I(ϕk, αj,m) =

Lk∑
`=1

−αk,`2π sin ∆Ψk,`,j,m(tn)

I(αk,`, f
0
j ) =

Lj∑
m=1

αj,m2πmt sin ∆Ψk,`,j,m(tn)

I(αk,`, rj) =

Lj∑
m=1

αj,mπmt
2
n sin ∆Ψk,`,j,m(tn)

I(αk,`, ϕj,m) = αj,m2π sin ∆Ψk,`,j,m(tn)

I(αk,`, αj,m) = cos ∆Ψk,`,j,m

Finally, the CRLB is found as the inverse of the FIM.
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[2] P. Djurić and S. Kay, “Parameter Estimation of Chirp Signals,” IEEE
Transactions on Acoustics Speech and Signal Processing, vol. 38, pp.
2118–2126, 1990.

[3] O. Besson, M. Ghogho, and A. Swami, “Parameter Estimation for
Random Amplitude Chirp Signals,” IEEE Transactions on Signal
Processing, vol. 47, no. 12, pp. 3208–3219, 1999.

[4] I. Rusnak and L. Peled-Eitan, “New Approach to Estimation of Chirp
Signal with Unknown Parameters,” in IEEE International Conference
on Microwaves, Communications, Antennas and Electronics Systems, Tel
Aviv, Israel, Oct. 21-23 2013.

[5] J. Gal, A. Campeanu, and I. Nafornita, “The Estimation of Chirp
Signals Parameters by an Extended Kalman Filtering Algorithm,” in
10th International Symposium on Signals, Circuits and Systems, Iasi,
Romania, June 30- July 1 2011.

[6] B. Völcker and B. Ottersten, “Chirp Parameter Estimation from a
Sample Covariance Matrix,” IEEE Transactions on Signal Processing,
vol. 49, no. 3, pp. 603–612, March 2001.

[7] E. Candes, P. Charlton, and H. Helgason, “Detecting Highly Oscillatory
Signals by Chirplet Path Pursuit,” 2006, Publication: eprint arXiv:gr-
qc/0604017.



9

[8] R. M. Liang and K. S. Arun, “Parameter Estimation for Superimposed
Chirp Signals,” in 5th IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, San Francisco, USA, March 23-26 1992.

[9] X. Xia, “Discrete Chirp-Fourier Transform and Its Application to Chirp
Rate Estimation,” IEEE Transactions on Signal Processing, vol. 48, pp.
3122–3133, 2000.

[10] A. Brodzik, “On the Fourier Transform of Finite Chirps,” IEEE Signal
Processing Letters, vol. 13, no. 9, pp. 541–544, September 2006.

[11] D. Peacock and B. Santhanam, “Multicomponent Subspace Chirp
Parameter Estimation Using Discrete Fractional Fourier Analysis,” in
Proceedings of the IASTED International Conference Signal and Image
Processing, Dallas, USA, Dec. 14-16 2011.

[12] I. Daubechies, Y. Wang, and H. Wu, “ConceFT: Concentration of
Frequency and Time via a multitapered synchrosqueezed transform,”
2015, Publication: eprint arXiv:1507.05366 [math.ST].

[13] J. Xiao and P. Flandrin, “Multitaper Time-Frequency Reassignment for
Nonstationary Spectrum Estimation and Chirp Enhancement,” IEEE
Transactions on Signal Processing, vol. 55, no. 6, pp. 2851–2860, June
2007.

[14] J. Guo, H. Zou, X. Yang, and G. Liu, “Parameter Estimation of Multi-
component Chirp Signals via Sparse Representation,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 47, no. 3, pp. 2261–2268,
July 2011.

[15] B. Wang and J. Huang, “Instantaneous Frequency Estimation of Multi-
Component Chirp Signals in Noisy Enviroments,” Journal of Marine
Science and Applications, vol. 6, no. 4, pp. 13–17, Dec 2007.

[16] F. Auger and P. Flandrin, “Improving the Readability of Time-Frequency
and Time-Scale Representations by the Reassignment Method,” IEEE
Transactions on Signal Processing, vol. 43, pp. 1068–1089, 1995.
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