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Abstract

In this work, we consider the problem of high-resolution estimation of the param-

eters detailing an N-dimensional (N-D) signal consisting of an unknown number

of exponentially decaying sinusoidal components. Since such signals are not

sparse in an oversampled Fourier matrix, earlier approaches typically exploit

large dictionary matrices that include not only a finely spaced frequency grid,

but also a grid over the considered damping factors. Even in the 2-D case, the

resulting dictionary is typically very large, resulting in a computationally cum-

bersome optimization problem. Here, we introduce a sparse modeling framework

for N-dimensional exponentially damped sinusoids using the Kronecker structure

inherent in the model. Furthermore, we introduce a novel dictionary learning

approach that iteratively refines the estimate of the candidate frequency and

damping coefficients for each component, thus allowing for smaller dictionaries,

and for frequency and damping parameter that are not restricted to a grid. The

performance of the proposed method is illustrated using simulated data, clearly

showing the improved performance as compared to previous techniques.

Keywords: Sparse signal modeling, spectral analysis, sparse reconstruction,

parameter estimation, dictionary learning, damped sinusoids.

IThis work was supported in part by the Swedish Research Council, the Crafoord’s and
Carl Trygger’s foundations, and the Royal Physiographic Society in Lund. This work has
been presented in part at the ICASSP and EUSIPCO conferences [1, 2].

∗Corresponding author. Phone: +46462228544.
Email addresses: js@maths.lth.se (Johan Swärd), sia@maths.lth.se (
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1. Introduction

High-dimensional decaying sinusoidal signals occur in a wide variety of fields,

such as spectroscopy, geology, sonar, and radar, and given the importance of

such signals in a variety of applications, the topic has attracted notable at-

tention in the recent literature (see, e.g. [1–11]). Common solutions include

subspace-based algorithms[3–8], which are typically making relatively strong

model assumptions, or the use of high-dimensional representations necessitating

an iterative zooming procedure over multiple dimensions, such as the technique

introduced in [11]. These kind of approaches often suffer from high complexity

and sub-optimal performance, typically requiring an accurate initialization or

model order information to yield reliable results, information which is commonly

not available in many of the discussed applications.

Often, the measurements are also assumed to be uniformly sampled, which

may well be undesired in applications such as, for instance, spectroscopy. Fur-

thermore, the number of modes present in the signal is generally unknown,

or may vary over time, typically necessitating some form of model order se-

lection decision. Given such difficulties, it is often of interest to formulate

non-parametric or semi-parametric modeling techniques, imposing only mild

assumptions of the a priori knowledge of the signal structure. Popular solutions

include the so-called dCapon, dAPES, and dIAA spectral estimators, which all

form generalized spectral estimates of the signal, constructing spectral repre-

sentations over both the frequency and damping dimensions [12, 13] (see also

[14, 15]). Although this form of techniques are robust to the made model order

assumptions, they suffer difficulties in separating closely spaced modes from each

other, and typically require notable computational efforts if not implemented

carefully [15].

As an alternative, one may use sparse modeling of the signal, forming a large

dictionary of all potential frequencies and damping candidates, thus generally

having vastly more columns than rows. For a given signal and the resulting
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dictionary matrix, one thus wishes to find the sparsest solution to the resulting

linear set of equations, mapping the signal to a linear combination of a few of the

columns of the dictionary. Such techniques have successfully been applied to line

spectral data, and the topic has attracted notable attention in the recent litera-

ture (see, e.g., [16–22]). Although these algorithms appear quite different from

each other, they share the property that the considered dictionary grid should

be selected sufficiently fine to allow for a sparse signal representation (see also

[23, 24]), which, if extended to also consider damped modes, necessitates a large

dictionary matrix containing elements with a sufficiently fine grid over the range

of both the potential frequencies and damping candidates (see, e.g., [13, 25, 26]);

this will be particularly noticeable if treating large data sets, or data sets with

multiple measurement dimensions. In order to mitigate this problem, we here

introduce a tensor representation of the signal model, allowing us to exploit the

resulting inherent Kronecker structure, which may be exploited to significantly

reduce the required complexity as compared to a naive implementation of the

sparse modeling framework.

Furthermore, we propose a novel dictionary learning approach, wherein one

iteratively decomposes the signal with a fixed small dictionary, adaptively learn-

ing the dictionary elements best suited to enhance sparsity. To this effect, we

initially form a coarsely spaced dictionary with undamped modes over the range

of considered frequency candidates, iteratively adapting both the frequency and

damping settings for the dictionary elements, thereby also allowing for both a

reduction and an expansion of the number of dictionary elements considered in

each iteration of the optimization. In order to further reduce complexity, we

propose a computationally efficient implementation based on the concept of the

alternating direction method of multipliers (ADMM) (see, e.g., [27]), where the

Kronecker structure of the resulting dictionary matrices may be exploited to

dramatically decrease the cost of each iteration.

The remainder of the paper is organized as follows: in the next section,

we introduce the considered data model. Then, in Section 3, we introduce

the idea behind decoupling the search dimensions. Section 4 introduces the
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ADMM formulation of the estimator, and Section 5 illustrates the performance

of the proposed estimator using simulated data. Finally, Section 6 contains

our conclusions. In the remainder of the paper, we use the following notation:

scalars are represented using lower case letters, whereas vectors are represented

with lower case bold-face letters. Matrices are represented with capital bold-face

letters, tensors with capital bold Euler script letter, (·)T denotes the transpose,

and (·)H the conjugate transpose.

2. N-Dimensional Signal model

Consider an N -dimensional signal consisting of a sum of K modes, i.e., K

N -dimensional damped sinusoids such that observation xτ at a sampling point

τ , where

τ =
[
t
(1)
i1

t
(2)
i2

. . . t
(N)
iN

]T
(1)

and t
(`)
i`

denotes the i`:th sampling point in dimension `, may be well modeled

as

xτ =

K∑
k=1

gk

N∏
`=1

ξ
t
(`)
i`

k,` + ετ (2)

where

ξk,` = ejω
(`)
k −β(`)

k (3)

and with gk denoting the complex amplitude of mode k, and ετ is an additive

noise term, here for simplicity assumed to be an independent identically dis-

tributed circularly symmetric Gaussian random variable. Assuming the signal

is observed over t
(n)
in

, for in = 1, . . . , In, and n = 1, . . . , N , the entire sequence

may be stored in an N-way tensor X ∈ CI1×I2×···×IN . It is worth noting that

this formulation makes no restriction on any of the dimensions to have a sam-

pling scheme that is equidistant, thus encompassing both missing data scenarios

as well as irregular sampling. The entire model may thus be written in tensor
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format as the sum of K rank one tensors, such that

X =

K∑
k=1

gkã
(1)(k) ◦ ã(2)(k) · · · ◦ ã(N)(k) + E (4)

where ◦ denotes the outer product defined such that element τ of X corresponds

to equation (2), E is the tensor containing the noise terms, and

ã(n)(k) =
[
ξ
t
(n)
1

k,n . . . ξ
t
(n)
In

k,n

]T
(5)

For an overview of tensor algebra sufficient for the here discussed results see,

e.g., [28], which also use a notation consistent with the one used in this article.

The model thus contain (2N + 1)K + 1 unknown parameters, namely

θ ,
[
{{ω(n)

k , β
(n)
k }Nn=1, gk}Kk=1, K

]T
(6)

of which 2NK are non-linear parameters. Clearly, one could, in theory, form

a non-linear least squares (LS) minimization over these parameters, as well

as form a model order estimate from the resulting model order residuals for

varying possible candidate model sizes. However, such a solution would in most

practical situations be computationally unfeasible, even for low dimensional data

sets, especially as the optimization is well known to have numerous local minima

[29]. To avoid this, we introduce a sparse modeling heuristic to approximate the

model. This can be done by creating a large dictionary of candidate parameters,

selected from a grid fine enough such that each true parameter lies sufficiently

close to some grid point. For instance, if, to simplify our notation, one considers

a single N -dimensional sinusoid and fix all but the first frequency and damping

coefficients, then one may approximate (4) using a dictionary containing P1

and J1 candidate elements along the (first) frequency and damping dimension,

respectively, such as

X ≈
P1∑
p=1

J1∑
j=1

gp,ja
(1)
ωp

(βj) ◦ a(2)
ω2

(β2) ◦ · · · ◦ a(N)
ωN

(βN ) (7)

where ω2, . . . , ωN and β2, . . . , βN denote the (for simplicity) fixed frequency and

damping coefficients along the 2nd to N :th dimensions,

a(n)
ω (β) =

[
ξ
t
(n)
1
n . . . ξ

t
(n)
In
n

]T
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where

ξn = ejω
(n)−β(n)

(8)

and gk,` denotes the contribution of each of these dictionary elements in the

approximation. Thus, as long as P1 and J1 are selected sufficiently large to al-

low for a grid of dictionary elements such that the true frequency and damping

coefficients lie close to one of the grid points, only one gp,j should be non-zero

for each of the K modes. By similarly extending the dictionary for each of

the frequency and damping dimensions, such that gp1,...,pN ,j1,...,jN denotes the

contribution of the corresponding dictionary elements for the pq:th and jr:th

frequency and damping dictionary elements, where q, r ∈ {1, . . . , N}, the re-

sulting (very large) dictionary would allow for a sparse approximative solution

of the unknown parameters, such that most of the dictionary elements would

not contribute to the approximation. Given such an approximative solution,

the number of modes, K, may be estimated as the number of elements with

non-zero contribution to the approximation. The non-linear parameters may

then be estimated correspondingly, such that for any non-zero variables, e.g.,

gh1,...,hN ,i1,...,iN , the non-linear parameters are estimated as the frequency and

damping coefficient that correspond to the found coefficients. Such a solution

may be obtained by reformulating the problem using the vec operator, defined

here for tensors such that it is the usual vec operation on the mode-1 matriciza-

tion, or unfolding (see also [28]), of a given tensor, i.e.,

vec (X) , vec
(
X(1)

)
(9)

This allows for a sparse LS solution to be found by solving

min
g̃
‖vec (X)− Ãg̃‖22 + ρ(g̃) (10)

where g̃ = vec (G), with G ∈ CP1×···×JN denoting the tensor formed from the

amplitudes of all of the dictionary elements, and the i:th column of Ã is formed

as
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Ã:i = vec
(
a(1)
ωp1

(βj1) ◦ a(2)
ωp2

(βj2) · · · ◦ a(N)
ωpN

(βjN )
)

(11)

where the notation A:i denotes the ith column of the matrix A. The penalty

term ρ(·) is added in (10) as the grid is typically chosen such that the number

of elements in vec(X) is smaller than the number of columns in Ã; thus, if

assuming that Ã is of full rank, the system of equations is under-determined,

with infinitely many solution, out of which one is interested in finding one that

appropriately weighs sparsity and model fit. Ideally, ρ(·) could be chosen as

a function counting the number of non-zero elements. However, the result-

ing optimization problem is well known to be combinatorial in nature and will

be unfeasible to solve even for moderate problem sizes. Common approxima-

tive choices include the scaled `1 norm [17, 30], `q penalties [16, 31], and the

reweighted `1 approach, which may be seen to correspond to the log penalty

[32]. Herein, we consider the `1 and the log penalty. It is worth noting that

the above sparsity restrictions allow for solutions having multiple damping co-

efficients for a given frequency. Such solutions imply that the component is not

an exponentially damped sinusoid; as this is not relevant for the here consid-

ered application, we proceed to refine the constraint such that it will only yield

unique frequency-damping pairs for each component. To this end, we propose

an iterative dictionary learning approach such that the damping parameters for

each sinusoidal component is held fixed during the sparse LS step, after which

the damping parameters are found using the residual from the sparse LS step,

one mode at the time, thus allowing for damping and frequency estimation to

be performed with a non-linear optimization algorithm, e.g., Newton’s method.

Thus, we initially fix all damping parameters to zero, modifying (7) such that

the dictionary is only formed over the unknown frequencies, i.e.,

X ≈
P1∑
p1=1

· · ·
PN∑
pN=1

gp1,...,pN a(1)
ωp1

(βp1) ◦ · · · ◦ a(N)
ωpN

(βpN ) (12)

The resulting minimization with respect to the K unknown frequencies, which

may then be used to estimate the damping components, iteratively finding each
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of the set of estimates. To allow for a computationally efficient solution, the

considered frequency and damping grids, respectively, are updated in each iter-

ation, such that the dictionary is refined in each step of the iteration. However,

even with such a reduction in complexity, the iterative optimization problems

are clearly daunting, being formed over J1× · · ·× JN and P1× · · ·×PN dimen-

sions, respectively. In the next two sections, we therefore proceed to examine

how these minimizations may be performed in an efficient manner utilizing the

Kronecker structure of the dictionary matrices for the sparse LS step, and by

solving the non-linear damping parameter estimation one mode at a time.

3. ADMM implementation

The minimization problem considered in (10) may be solved using an ap-

proximation of the form

min
g̃
‖vec(X)− Ãg̃‖22 +

P1×···×JN∑
k=1

λk|g̃k| (13)

where λk denotes a set of tuning parameters, for k = 1, . . . , P1 × · · · ×

JN . In case these tuning parameters are all selected equal and the penalty is

included as an inequality constraint, the resulting minimization is equivalent

with the regular `1 penalized LS problem, often called basis pursuit denoising

[33], or the LASSO [30]. For highly correlated dictionary elements, as may be

required for high resolution N -D spectra, one may obtain sparser solutions using

a reweighted LASSO formulation [32], such that the λk:s are instead selected as

λk =
φ

|g̃k(`)|+ ε
(14)

where the constant ε is included to avoid numerical problems when gk(`) is

close to zero. Here, g̃k(`) denotes the value of gk at iteration `, and with

φ > 0 denoting a tuning parameter controlling the sparsity at the solution. A

general efficient iterative algorithm for solving problems such as (10), using an

ADMM implementation was proposed in [27], and may be easily adapted to
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the here considered reweighted scenario. The steps involved are summarized in

Algorithm 1, where the Ψ operator is a shrinkage operator, defined as

Ψ(x, γ) = x(1− γ/|x|)+ (15)

where (·)+ denotes the positive part of a scalar. In Algorithm 1, g̃ has been split

up into two separate variables z and u. Furthermore, d denotes the scaled dual

variable, (see, e.g., [27] for a detailed discussion). The complexity of each itera-

tion in the resulting algorithm is approximately O(n2p), where p and n denote

the columns and rows of a, respectively. This is about the same as the computa-

tional cost for many LASSO solvers (see e.g. [34]). In the N -dimensional case,

the overall computational complexity is about O(
∏N
n=1 JnPn

∏N
n=1 I

2
n), imply-

ing that even a 3-dimensional problem with 100 grid points in each dimension

would result in a cost of approximately 10012I1I2 operations, in each step, where

In denotes the number of samples in dimension n. Fortunately, this complexity

may be significantly reduced by exploiting the inherent Kronecker structure of

the model. In order to do so, we rewrite (4) using tensor products as

X = G×1 A(1) ×2 A(2) · · · ×N A(N) + E (16)

where the operator ×n represents the n-mode product of a tensor with a matrix,

and the dictionary matrix for dimension n is given as

A(n) ,
[

a
(n)
ωk1

(βk1) . . . a
(n)
ωK1

(βK1
)
]

(17)

Expressed in this form, one may note that the matricization may be accom-

plished via Kronecker products instead (see, e.g.,[28], [35]), yielding

X(1) = A(1)G(1)

(
A(N) ⊗A(N−1) ⊗ · · · ⊗A(2)

)T
(18)

where ⊗ denotes the Kronecker product, and X(1) ∈ CI1×
∏N

n=2 In is obtained by

stacking all the mode-1 slices of X, and with G(1) defined similarly. Vectorizing

the resulting mode-1 slices yields (see, e.g.,[36]),

vec
(
X(1)

)
=
(
A(N) ⊗ · · · ⊗A(2) ⊗A(1)

)
vec
(
G(1)

)
(19)
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allowing us to express the parameters in (10) as

g̃ , vec
(
G(1)

)
∈ CK̃×1 (20)

Ã ,
(
A(N) ⊗ · · · ⊗A(2) ⊗A(1)

)
∈ CĨ×K̃ (21)

As a result, the full Ã matrix does not need to be formed, and vector multipli-

cation of the form Ãx and ÃHy, for any appropriately sized vector x and y,

may be computed iteratively by each sub-matrix A(n), and by then reshaping

the resulting elements (see, e.g.,[37, p. 28] for further details). This allows for

a dramatic complexity reduction. To illustrate this, consider the case where

each A(`) matrix is n× n. Then, the operation Ãx, which would require about

O(n2N ) multiplications if first forming Ã and then computing the inner-product

using this matrix, may instead be formed using only O(NnN+1) (see, e.g., [38])

operations. Furthermore, the LS step in the ADMM algorithm for solving (10)

may also be computed significantly cheaper by utilizing its Kronecker struc-

ture, simply by calculating the singular value decomposition of each sub-matrix

A(n) = UnΣnVH
n , and then utilizing that the singular value decomposition of

Ã is given by (see, e.g., [36, p. 246])

Ã = UÃΣÃVH
Ã

(22)

where

UÃ = U1 ⊗ · · · ⊗UN (23)

ΣÃ = Σ1 ⊗ · · · ⊗ΣN (24)

VH
Ã

= VH
1 ⊗ · · · ⊗VH

N (25)

As a result, one may solve step 3 in Algorithm 1 by solving the equivalent LS

problem

min
z̃

∣∣∣∣∣∣
∣∣∣∣∣∣
 UH

Ã
y

VH
Ã
ξ

−
 ΣÃ
√
µ I

 z̃

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(26)

where

z̃ =
(
Σ2

Ã
+ µI

)−1 (
ΣÃUH

Ã
y +
√
µVH

Ã
ξ
)

(27)
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with z̃ = VH
Ã

z and ξ =
√
µ(u(`) − d(`)). Thus, the LS step can be solved by

three matrix vector multiplications, two Hadamard products between vectors,

one scalar multiplication of a vector, and a vector-vector addition, which may all

be calculated using their inherent Kronecker structure, significantly reducing the

computational cost. For example if each A(`) is n×n, the cost for our approach

is approximately O(NnN+1) versus O(n3N ) for a solution that does not use the

inherent structure of the equations.

4. Sparse dictionary learning

As noted above, the considered grid over the candidate frequency and damp-

ing coefficients are updated in alternating fashion. Let K̂ denote the number

of non-zero amplitudes after the sparse LS step. Then, the dictionary learning

may be done by forming the residual1

R = X− G×1 A(1) ×2 A(2) · · · ×N A(N) (28)

Using a relaxation-based procedure (see also [39]), one then iteratively adds

back one mode at a time to the residual in (28), and form an estimate of the

frequency and damping of this mode using an N -dimensional single mode solver,

such as, for instance, the standard nonlinear least squares estimator or, in the

case of uniformly sampled data, an estimator such as the PUMA estimator [40].

Using the refined parameter estimates, the mode is then subtracted again, and

the next mode is refined similarly. The procedure is summarized in Algorithm

2. Using the refined modes, the dictionary is then updated, such that it is

separated into N dictionaries, one over each dimension, with each dictionary

being centered in a fine grid around each of the found frequencies. As a result,

the unused dictionary elements, having zero-amplitudes, are excluded from the

updated dictionary (unless being close to one of the found modes). This also

implies that closely spaced modes may yield overlapping dictionary elements;

1To simplify our notation, we have here suppressed the dependencies on the frequency ω

and the damping β.
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such duplicated dictionary elements are removed to avoid collinearity in the

dictionary. For each grid point, the dictionary element is scaled according to

the found damping coefficient of the corresponding mode, to ensure that all

dictionary elements have the same norm, thus refining the dictionary iteratively

over both frequencies and damping coefficients. We coin the resulting method

the Sparse Exponential Mode Analysis (SEMA) algorithm.

5. Numerical examples

We proceed to examine the performance of the proposed method using sim-

ulated data. To simplify the presentation, we focus on the 1-D, 2-D, and 3-D

cases, since problems of these dimensions offer more intuitive results that are

also easier to analyze. Considering first the 1-D case, we illustrate the perfor-

mance of the proposed method using simulated data. We initially consider a

data vector containing N = 128 samples of a three mode signal, where the fre-

quencies and damping parameters are chosen uniformly over [0, 1] and [0, 0.025],

respectively. We note that we here use normalized frequencies, lying in the in-

terval [0, 1], denoted by the letter f . For now, we ensure that no modes are

closer in frequency than 1/N . Figures 1 and 2 depict the resulting performance

of the SEMA algorithm, as compared to the non-parametric damped-Capon

(dCapon) estimate [12, 15], as a function of the signal-to-noise-ratio (SNR),

defined as log10(||y||22/Nσ2), where σ2 denotes the variance of the noise. The

two figures show the root mean squared error (RMSE) of the frequency and

damping estimates, defined as

RMSE =

√√√√ 1

MK

M∑
m=1

K∑
k=1

(
θm,k − θ̂m,k

)2
(29)

where θm,k denotes the estimate of either the frequency or the damping of mode

k for Monte-Carlo simulation m, M is the total number of Monte-Carlo simu-

lations, and K the number of modes. These results have been obtained using

M = 175 Monte-Carlo simulations. In this example, dCapon has a frequency

12



grid that is selected to be 6000×6000, uniformly covering frequencies and damp-

ing factors in [0, 1] and [0, 0.025], respectively, and where the recommended filter

length of N/4 is used. The SEMA algorithm on the other hand uses a dictionary

containing only 128 elements in the first iteration, and, thereafter, uses only 40

grid points for each found mode when updating the dictionary in each subse-

quent iteration. As can be seen from the figures, the proposed SEMA algorithm

yields notably better estimates than the dCapon estimator, without requiring a

large dictionary grid over both dimensions, thereby allowing for a substantially

faster implementation. It is also worth noting that the dCapon estimation er-

rors are here larger than the smallest possible error that is attainable given the

current grid size, implying that the grid size does not in itself limit the quality

of the estimates.

Next, we examine the ability of the methods to resolve two closely spaced

spectral lines. In this case, we consider a signal containing two sinusoidal com-

ponents with frequencies, f1 = 0.6417 and f2 = 0.6456, i.e., separated by 0.5/N ,

with damping constants being 0.010 for both modes. Figure 3 illustrates the

resulting frequency estimates as obtained from 5 Monte-Carlo simulations, and

SNR = 20 dB. For comparison, the figure also shows the estimates obtained

using 1-D SEMA, dCapon, dIAA [41], and for a Lasso method with a dictio-

nary containing both frequencies and damping factors, and exploiting a zooming

similar to the one used in SEMA. Here, to speed-up the computations, the fre-

quency grid for dCapon has been selected to only be formed on [0.63, 0.67],

allowing the method notable a priori information on the frequency region of in-

terest. The damping grid ranges over [0, 0.025] and has size 500 for all methods,

except for the used Lasso method, where, due to complexity reasons, it is set to

10. As seen in the figure, the proposed method clearly manages to resolve the

two peaks, whereas the Lasso and dIAA estimates are only partly succeeding to

do so, while dCapon yields noticeably biased estimates. In the figure, the (red)

square indicates the region 1/(2N) centered around the true frequencies.

We proceed to examine the performance of the SEMA algorithm for 2-D sim-
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ulated data, examining the RMSE of two well separated peaks, showing that the

proposed method has similar performance to the statistically efficient PUMA

method [7], using simulated data mimicking a 2-D Nuclear Magnetic Resonance

(NMR) signal, simulated using (2), containing two damped sinusoids and having

33 × 31 samples. Figures 4-7 illustrates the performance of the SEMA estima-

tor as compared to the parametric PUMA estimator and the corresponding

Cramér-Rao lower bound (CRLB) [42]. The frequencies were randomly selected

in the interval from 0 to 1 in normalized frequencies, and selected such that

components were separated by at least 3/N in each dimension. If the spacing

between the peaks is smaller, the estimation will degenerate for all methods.

The damping parameters were set to β1 = (0.05 0.02) and β2 = (0.01 0.04)

for all simulations. Each mode was normalized in amplitude, thus making sure

that both peaks were equally dominant. The PUMA algorithm was, as for all

examples, allowed 100 iterations, as well as oracle model order information, and

the initial grid for the proposed 2-D method was, as for the following examples,

set to 100. The proposed method was allowed two iterations and used 33 grid

points to zoom in on each found mode. The choice of λ governs the number

of peaks that may be found. If set too high, peaks with low amplitude will be

suppressed, and if set too low, peaks that originate from the noise will not be

suppressed. However, due to the reweighting step, a too small λ will be com-

pensated for, and therefore the algorithm is relatively robust to the choice of λ,

as long as it is not set too large. Therefore, it is preferable to set λ to a small

value. In these examples, we set λ equal to the tenth largest peak found in the

periodogram. One could argue that we thereby limit the number of peaks that

may be found, but that is easily avoided. If λ were set to equal the amplitude of

the r:th largest peak and, when using the method, we found r peaks, one would

run the algorithm a second time but with a somewhat smaller λ value. In this

way, we make sure that we do not in fact limit the algorithm to a specified

number of peaks. The test was performed using 250 Monte-Carlo simulations,

for each value of the considered SNR. Figures 4-7 illustrate the total RMSE of

all the unknown parameters. As can be seen from the figure, both the para-
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metric PUMA, which has been allowed oracle model order information, and the

proposed semi-parametric SEMA algorithms yield statistically efficient param-

eter estimates especially for larger larger SNR. Here, if the proposed algorithm

did not manage to estimate the number of modes correctly, that estimate was

then removed from the RMSE calculations for all methods. This happened two

times out of 1500 Monte-Carlo simulations. The average computation times for

100 simulations on SNR level 20 was around 0.6 seconds for SEMA and 0.005

seconds for PUMA.

We proceed to examine the methods ability to resolve two closely spaced

peaks. This was done by fixing the first mode at frequency f1 = (0.4, 0.6),

and letting the second mode gradually approach the first. The modes were

initially separated by 1/N1 and 1/N2 in each frequency dimension, and the

test was stopped when the modes were separated by 0.1/N1 and 0.1/N2. The

data size for this example was again 33 × 31. The same SEMA settings as

above were used. We also compare the estimates to that of a zero-padded 2-D

periodogram, where 213 zeros were padded in each dimension, but zoomed in

on the correct frequencies (±0.1 in each frequency). The damping parameters

where fixed to 0.02 for all modes and dimensions, and the SNR was set to 10

dB. Furthermore, PUMA was again allowed complete knowledge of the number

of peaks. To determine whether or not two peaks were resolved, we ensured

that the method fulfilled at least two separation criteria: First, the peaks that

were found had to be at least within a rectangle of size 1/N1 × 1/N2 from

the correct frequencies; Secondly, the power of the valley between the peaks

were allowed to be at most 90% of the average power of the peaks. If these two

criteria were met, the modes were deemed to be resolved. The results are shown

in Figure 8, where the x-axis should be interpreted as the distance divided by

N1, i.e., 0.1 means that the distance between the modes is 0.1/N1. As may

be seen from the figure, the periodogram’s ability to distinguish the two modes

drastically decreases as the modes become closer. As may be expected. the

PUMA method on the other hand manages to separate the modes very well

until they are about 0.3 apart from each other. As can be seen from the figure,
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the SEMA method achieves about the same performance as PUMA until the

distance is less than 0.4. It should be stressed that the PUMA estimator is

given perfect prior knowledge about the number of modes, whereas the 2-D

SEMA has no such prior information. As is clear from the figure, the SEMA

estimate seems to be able to separate closely spaced modes almost as well as the

parametric and statistically efficient PUMA estimator, without imposing any a

priori model order information, as well as yielding far better performance than

the periodogram estimate. A typical result is shown in Figures 9 and 10, where

the peaks are separated by 0.5/N1. It clearly shows how SEMA manages to

separate the two peaks, whereas the periodogram only shows one peak.

In the next example, we investigate how well SEMA works on non-uniformly

sampled data. We made 100 Monte-Carlo simulations on a simulated NMR sig-

nal containing 33× 31 sample points, where the second dimension was sampled

uniformly and the first dimension was sampled in a non-uniformly manner,

mimicking a typical high-dimensional NMR experiment. The frequency was

randomly selected and separated at least 3/N1 from each other, whereas the β

parameters were set to β1 = (0.01, 0.02) and β2 = (0.04, 0.03) throughout the

simulation. Again, each mode was normalized in amplitude. In each dimension,

100 frequency grid points were used, and SEMA was allowed one iteration. Since

PUMA does not work with non-uniformly sampled data, we instead applied an

NLS search for the frequency and damping parameters in the mode estima-

tion stage (Algorithm 2). Figure 11 shows the result where the frequency and

damping parameters RMSE are shown together with the corresponding CRB.

Finally, to also illustrate the performance for higher dimensional data, we

examine a 3-D data sets containing two unit amplitude damped modes at

frequencies drawn uniformly from (0, 1), with damping parameters fixed to

β1 = (0.01, 0.06), β2 = (0.02, 0.05), and β3 = (0.03, 0.04), and having 13×13×13

samples. The modes were created so that they were separated at least by 1/N1 in

all dimensions. The summed RMSE of the six frequency components was com-

puted using 100 Monte-Carlo simulations for each considered SNR-level; ranging

from −10 dB to 10 dB in steps of 5 dB. These estimates were compared to the
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N -dimensional PUMA estimator [10], and a 3-D periodogram zero-padded to

512 samples in each dimension, and . On our computer, it was not possible

to allow for more zero-padding due to memory constraints. Furthermore, the

estimates from the periodogram were selected as the two largest peaks in a cube

of size 0.1 × 0.1 × 0.1 around each of the true frequencies, thereby disallowing

the periodogram to return any frequencies outside this area. The SEMA es-

timator were given an initial frequency grid of 15 × 15 × 15 and allowed only

one iteration. The user parameter λ was set to either 0.35 or to the mean of

the all but the ten largest peaks in the nonzero-padded periodogram, depending

on which value was the smallest. The results can be seen in Figure 12, show-

ing the log RMSE for the frequency estimates for the three methods, clearly

showing the preferable performance of the SEMA algorithm as compared to the

periodogram, and similar performance to the N -dimensional PUMA estimator,

even though this has been allowed oracle model order knowledge. The figure

also shows the log RMSE for the SEMA and PUMA damping estimates, ob-

tained as a part of the procedure. We note that the used frequency resolution

is not limiting the quality of the periodogram estimates via grid effects. It is

also worth noting that the evaluation time for the periodogram, implemented

using Matlab’s optimized FFT command, is only four times faster than using

our proposed SEMA 3-D implementation, even though SEMA is implemented

using standard Matlab code as well as estimating the damping parameters.

6. Conclusions

In this work, we have introduced a semi-parametric separable sparse model

for N -dimensional damped sinusoidal signal components, forming a computa-

tionally efficient implementation exploiting the inherent structure of the result-

ing tensors, which allows us to treat the dictionary for each sampling dimension

seperately. The proposed SEMA algorithms is found to yield highly accurate

estimates of the frequency and damping coefficients of the signal modes, without

imposing a priori knowledge on the number of modes present in the signal, a
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difficult for previously proposed parametric methods. To further reduce com-

putational complexity, the proposed method reduces the 2-D dictionary into a

sequence of 1-D dictionary learning problems, specifically exploiting the prop-

erties of the damping coefficients in a novel dictionary learning approach. The

performance of the method is illustrated using 1-, 2-, and 3-D simulated data as

compared to the (parametric) PUMA estimator, the Cramér-Rao lower bound,

and a zero-padded periodogram estimate, as well as the corresponding non-

parametric Capon and IAA based estimators, and a LASSO-based estimator,

clearly illustrating the achievable performance gain.
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Algorithm 1 Sparse LS via ADMM

1: Initiate z = z(0),u = u(0), and ` = 0

2: repeat

3: z(`+ 1) =
(
ÃHÃ + µI

)−1 (
ÃHy + µ(u(`)− d(`))

)
4: u(`+ 1) = Ψ

(
z(`+ 1) + d(`+ 1), λµ

)
5: d(`+ 1) = d(`) + z(`+ 1)− u(`+ 1)

6: `← `+ 1

7: until convergence

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]
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Algorithm 2 Mode estimation

1: Initialize all damping coefficients to zero and use (10) to form initial esti-

mates
{
gγk

}K̂
k=1

2: for i = 1, . . . , itermax do

3: Compute the residual according to (28)

4: for k = 1, . . . , K̂ do

5: Add the current mode to the residual:

Yk = Rk + gγk
a
(1)
k ◦ · · · ◦ a

(N)
k

6: Estimate the frequencies and the dampings for the mode

7: Remove the current mode:

Rk = Yk − gγk
a
(1)
k ◦ · · · ◦ a

(N)
k

8: end for

9: Use the found frequencies and damping coefficient to create new dictio-

naries and re-solve (10).

10: end for
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Figure 9: Resulting estimates using 2-D SEMA on two closely spaced modes.
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Figure 10: Resulting estimates using two dimensional periodogram on two closely spaced
modes.
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