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Abstract—In this paper, we propose a gridless method for
estimating an unknown number of fundamental frequencies.
Starting with a conventional dictionary matrix, containing sets of
candidate fundamental frequencies and their corresponding har-
monics, a non-convex log-sum cost function is formed such that
it imposes the harmonic structure and treats every fundamental
frequency in the dictionary as a parameter. The cost function is
iteratively decreased by minimizing a surrogate function, and, in
each iteration, the fundamental frequencies are refined, whereas
redundant parameters are omitted from the dictionary. The
proposed method is tested on both real and simulated data,
showing its preferred performance as compared to other state-
of-the-art multi-pitch estimators.

I. INTRODUCTION

In areas such as audio, biomedicine, and mechanics, the
estimation of fundamental frequencies is often of central im-
portance. In particular, the multi-pitch problem is challenging,
as one needs to determine not only the number of fundamental
frequencies, but also the number of harmonics related to
each fundamental frequency. This problem has historically
been addressed by utilizing various forms of model order
estimators, or by simply assuming the model order is already
known a-priori [1]-[4]. Early pitch estimation methods relied
on covariance-based methods as the ones presented in [S46].
Later, filterbank- and subspace-based methods were introduced
and MUSIC-like methods were widely used [7]-[12]]. Recent
contributions include, e.g., [13], where the computational
speed is in focus, and [[14] where the problem is to estimate the
fundamental frequencies in real noise when multiple people
speak at the same time. In [15], the Pitch Estimation using /o
norm and Block Sparsity (PEBS) algorithm was presented,
where the fundamental frequency estimation problem was
instead solved by using a (block-)sparsity approach, thereby
combining the model order estimation with the overall estima-
tion of the fundamental frequencies and their harmonics. Based
on the promising performance of the initial PEBS algorithm,
several improvements have been suggested, including focusing
on the choice of hyperparameters [16]], time-updating [[17]], and
computation complexity [18]]. The results presented in these
works illustrate the benefits of using a sparse framework for
solving multi-pitch estimation problems.

Sparse reconstruction methods are used in a vast number
of areas and have been intensively studied (see, e.g., [19]-
[24]). As in the case of PEBS, the resulting sparse problems
have often been expressed using dictionary matrices, contain-
ing a large quantity of possible signal candidates, with the
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assumption that only a small subset of these candidates is
needed to approximate the signal well. These candidates are
often selected on a pre-defined grid that spans the parameter
space of interest. Recently, some concerns have been raised
as to how this grid-based selection of candidates affects the
performance. In [25]], it was shown that since the grid and the
true parameters are unlikely to coincide, this may cause the
estimation to deteriorate. If one, in an effort to circumvent this,
increases the number of grid points to decrease the distance
between the grid and the true parameters, the dictionary
matrix will become increasingly coherent, i.e., the columns
of the dictionary matrix become correlated, which may in
turn degrade the performance, and increase the computational
complexity of the algorithm. To counter these drawbacks,
it has recently been suggested that one may instead solve
the sparse problem without applying a grid, using so-called
gridless methods. One noticeable example of this is the use
of the atomic norm [26]-[30|], where the sparse problem is
instead formulated as a convex semi-definite program (SDP).
The use of the atomic norm can be seen as solving the
sparse problem using an infinite grid, but without the problem
of a resulting coherent dictionary matrix. Unfortunately, the
atomic norm formulation does not easily allow for imposing
general data structures to the cost function, and, typically,
any additional model constraints will fundamentally change
the problem formulation. This is in contrast to the grid-
based approaches, where such model structures could easily
be accounted for by adding different constraints to the cost
function.

In this paper, we aim to combine the benefits of the off-grid
methods with the use of a cost function that easily allows for
adding structure to the signal of interest. To this effect, we will
expand on the PEBS formulation and introduce a method for
solving problems involving group sparsity with sparse groups
based on the super-resolution iterative reweighted (SURE-IR)
method [31]. We then proceed to adress both the compu-
tational complexity issue as well as the appropriate choice
of hyperparameters for the introduced estimator. Using both
simulated and real audio data, we illustrate the preferable
performance of the introduced estimator, comparing to several
earlier alternative formulations. For the real data case, we test
the proposed method using the Bach10 data set, containing 10
musical pieces composed by Johann Sebastian Bach, showing
that the proposed method achieves similar performance as
state-of-the-art music transcription methods, although without
the need of any training data, as is typically utilized by such
methods.

It should be noted that the proposed method is not limited to
audio problems, although this is here the main focus. Indeed,
due to the possibility of adding new constraints to the cost



function, the technique may likely be extended to find use in
other related fields, such studies of mechanical vibrations (see,
e.g., [32]-[35]).

II. SIGNAL MODEL AND EARLIER WORK
Consider the multi-pitch signal modeﬂ
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where fj denotes the kth fundamental frequency (also de-
noted pitch), aj, the complex amplitude corresponding to
the (th overtone of the kth fundamental frequency, t,, for
n = 1,..., N, the nth time point, and €(n) any non-tonal
audio or noise component, here, for simplicity, being modelled
as a complex-valued white Gaussian noise (see also [30]).
Often, the problem of interest is that of estimating fj for
k=1,..., K. If this set is known, as well as the number of
overtones for each pitch, Ly, the corresponding amplitudes of
the overtones may be formed, for instance, using least squares
(LS).

Typically, it is non-trivial to determine the required model
orders; for simplicity, we will initially consider the problem
of only estimating K sinusoids in noise. This corresponds
to the case where L, = 1 for all k. To form an efficient
estimator, one may then include the model order estimation
into the estimation of the frequencies, for instance by forming
the sparse optimization problem (see also [37])

minimize ||y — Az||3 + A||z||; @)
z

where A is a dictionary matrix, z a vector containing the
complex amplitudes, A is a hyperparameter that controls the
amount of sparsity in the solution, and

y=[ (1) y(n) |" 3)

Usually, the dictionary, A, is an N X M matrix containing
M > N signal candidates (in this case sinusoids). Thus,

ay | “4)

where aj, = | ... eximikty ]T.

The first part of is thus a data-fitting term, whereas
the second term is a sparsity enhancing term, penalizing the
magnitude of z, thus promoting a sparse solution, containing
only a few signal candidates. This methodology is widely used
in signal processing and has been popular for many years
(see, e.g., [19]]). However, it has in recent times been argued
that using a pre-defined grid may cause the estimation to
deteriorate, mainly because of the fact that the true parameter
value will typically not exactly coincide with any of the grid
points. Trying to increase the grid size, in an effort to minimize
the distance from the grid points to the true values, may further
harm the estimation as the dictionary matrix then becomes
more coherent. To address this issue, a gridless method based
on the use of the atomic norm was proposed in [27]. Instead
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IFor notational and computational simplicity, we here consider the discrete-
time analytic signal of the (real-valued) measured signal.

of solving a problem based on a dictionary matrix, the authors
proposed the gridless formulation (for the noiseless case)

o1
minimize —(z + uq)
T,u 2
H

Yy
where T'(u) forms a Hermitian Toeplitz matrix with the vector
u on its first row, and where u; denotes the first element in
u. The corresponding frequencies are then obtained using a
Vandermonde decomposition of T'(u*), where u* denotes the
value of w at the solution of (5). The atomic norm enjoys many
benefits (for a more detailed discussion on the topic, see, e.g.,
[26]-[30]), but it is generally hard to generalize the method
to accommodate for other model restrictions, such as block
sparsity or, e.g., spectral smoothness [38]]. As an alternative,
another gridless approach was suggested in [31]], which was
based on the formulation of a non-convex optimization prob-
lem. The proposed problem utilized a logarithmic penalty to
enforce sparsity, such that

subject to [gc
y

M
minimize |[y — A(0)z][3 + A D log (lzm|* + 1) (©)
' m=1
where 7 > 0 is a parameter ensuring that the function
is not evaluated at zero, and z,, denotes the mth element
of z. It should be noted that the dictionary matrix is now
parameterized over the parameter vector @, containing the
sought fundamental frequencies. Thus, instead of using a fixed
grid, the grid points are selected as to minimize the cost
function in (6). Using a logarithmic penalty will enhance
the sparsity, but, at the same time, render the problem non-
convex. To solve the problem, a majorization-minimization
(MM) approach was proposed in [31] and the optimization
problem was reformulated using a surrogate function, thus
yielding a simplified version of the original problem. This
allows the problem to be solved using an analytic solution
of the amplitudes as a function of @, such that

2(0) = (A"(0)A(0) + AO) " AT@O)y )

where

. 1
DO = diag( : ppp— ) (8)
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with zm) denoting the mth element of z at iteration ¢. Using
this closed-form solution, the frequencies may then be found
using a gradient descent method. The resulting algorithm starts
with an initial grid and then iteratively refines the grid points to
find the correct solution. This results in a dynamic grid, where
the redundant grid points are removed, and the grid points
closest to the true solution are refined. The initial grid may
here be much coarser than the grid needed to solve (2) with a
classic grid-based solution. In the following, we will extend on
the SURE-IR algorithm to allow for the incorporation of block
penalties, as well as sparsity within each block, showing how
the resulting technique may be used to solve the multi-pitch
problem.



III. PROPOSED METHOD

To take the harmonic structure in (1)) into consideration and
generalize the above discussed SURE-IR algorithm, we need
to reformulate the problem so that it allows for a closed form
solution similar to (7). In order to do so, let A(@) denote the
N x M dictionary matrix with

A0) =] A1(61)
Ay(by) = [ a(fy) a(20,)

a(&gg) — [ ei27r20gt1

Ac(0c) | 9)
a(Lyb,) | (10)

ei27r£0gtN ]T/\ﬂN) (11)

where 6, denotes the fundamental frequency for the gth pitch-
group, for g = , G, with G denotlng the number of
considered groups, and M = Z _, Lg, i.e., the total number
of frequencies considered in the initial grid. Note that by
dividing with +/N, the columns of the matrix A(6) are
normalized. Using the logarithmic penalty for a group penalty,
and at the same time allowing for sparsity within the groups,
one may consider the cost function

a Ly
mlnlmlze A Z Z log (|zg,e|” + 1) +
g=1/¢=1
G
Y log (llzgll3 +1) /L + [ly — A(@)zl3  (12)
g=1

where 1 and )\ are hyperparameters that govern the group
sparsity and the overall sparsity, respectively, n > 0 are
constants ensuring that the functions are not evaluated over
zero, and where z, denotes the amplitudes related to group
g in A. As expected, the problem in is not convex and
difficult to solve. To allow for a closed form solution for z,
the second term in (12) is rewritten as

G G

> log(llzgll3 +n)/Lg = Y log(||Fyzl5 +n)/L, (13)
g=1 g=1

where F, is a 25:1 L, x Zle L, diagonal matrix with
ones on the diagonal corresponding to group g, and zeros
elsewhere. Thus, F,z is not equal to z,. However, their non-
zero elements are equal, and z, is a subvector in the resulting
vector Fyz. To solve (12), we then follow the same approach
as in [31] and use an MM approach. To do so, a surrogate
function, Q(z|z(?), which is much simpler than the original
function, is devised such that it coincides with the original
function at the current point z(*), and is greater than or equal
to the original function everywhere else. It can be shown that
minimizing (or even just decreasing) Q(z,z()) then yields
a non-increasing updating step in the original function, thus
yielding a method of minimizing the more complex function,
using simpler functions. An appropriate surrogate function to
(12) may be selected as

e
2]z ZL 1( ||Fy ZH%*"I
= [Fgz |5 +n

+ log(||Fyz V(|3 + 1) — 1) (14)

for the second term in and
|2g,|* + 1 i
Z <()| +log(|zg " +1) — 1
q: :
15)
for the first term, thus yielding
Q(z]2")) = p (2]27) + Nz (2]2")

Removing terms that are independent of z and 8, the surrogate
cost function may be re-written as

minimize S(z, 8]z") (16)
where
) G
S(2,0127) =xz""DY)z + 1> 2" FEDF 2/ L,
g=1
+||A(8)z — y][3 (17)
with
i . 1 1
D(()):dmg( o T ) (18)
|21 +n |2y 12+
, 1
DW=_— __—_  forg=1,...,G (19
I ||Fgz®3 4+
Furthermore, let
H = "F/D{F,/L, (20)

g=1

Differentiating S(z, 8]z(*)) with respect to z, setting it equal
to zero, yields

0S(z,0|z")
Oz

. X —1
- (ADEP +uHO A(B)HA(0)> A0y (22)

=0« 21

z(0)

Using (22), one may then find the @ that minimizes (I6) by
searching for the best 8 using, e.g., a steepest descent method,

by substituting in (16), yielding
minignize S(z*,0|z)) =
ING), ()\D((f) +uHD 4+ A(e)HA(e)) A0y
(23)

Following the reasoning in [31f], one may show that the
original cost function, I'(8, z), will be non-increasing when
one decreases the surrogate function, thus showing that
0O Y 20Dy < (@Y, z(™). This proof has been pre-
sented in [31]] for the problem in (6)); the corresponding proof
for the here considered case follows directly, and is, in the
interest of brevity, thus omitted.

Interestingly, the minimization problem in (23) is very
similar to the one in [31]]; the difference lies in the introduction
of uH®, which weights the different z, , accordingly to the
power of the group they belong to. This indicates how easy it is
to extend the SURE-IR algorithm and allow for the modeling
of other structures in the signal. For instance, one may consider



Algorithm 1 The BSURE-IR estimator
1: Input: A grid, 0, of size M over the considered funda-
mental frequencies, A = Ao, gt = po, £ = &0, n = 1,
i=1,k=0,2z0 = One,s z() = 1p7¢, and data vector
y.
Output: The estimates of z( and 8",
while ||z() — z(~D|, > ¢ do
Form H® from (T8), (T9), and 20).
Update z?&)(i) from (22).
Update 689 by taking a single step in (28).
Decrease A, 1, and u, prune the dictionary and remove
all columns of A(0) corresponding to elements in z
with |24 ¢| < 0.05 and [|z4||2 < 0.05.
Seti=1i+1
If ||z]|o = O, then set k = k + 1, u = po/2%, 20 =
One, 29 = 116, and restart the iterations with ¢ =
1.
9: end while

AN AN I

adding a logarithmic version of the total variation penalty
to (12), which would then simply add another term in (23).
This suggests that the SURE-IR approach, in contrast to, e.g.,
atomic norm, can allow for adding and subtracting different
penalties and may thus easily be extended to cover also other
model structures.

For the gradient based search, one needs to compute the
gradient of S(z*,0|z(")) with respect to 6. The gradient for
the single sinusoid case was presented in [31] and the reader
is referred to that paper for the details. However, we note
that, in contrast to the single sinusoidal case, the derivative
of one fundamental frequency, A (0)/00, is in the examined
case operating on all the elements of that pitch group; the
derivative will thus be a matrix instead of a vector for the
here considered case. Thus the direction, dg4, for which the
frequency for the pitch group g is moving is

dy, = —y" (T1 + AGAH T ) y (24)
where
_0A(9) H

T) = =~ T:A(6) (25)

with
Ty = (ADy + pH + A(6)7 A(0)) ' (26)

and

BINC)S OA(0

G=-T <84(9) A(0) + A(G)Haé)> T, (27)

When forming the gradient step, each harmonic is then multi-

plied with its corresponding harmonic order, i.e., £. Thus, the
updating becomes

i+1) _ p(i

o5+ = o)

— adyg (28)

where « denotes the step length. The harmonics are then
updated accordingly by scaling the fundamental frequency
with the harmonic order /.
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Fig. 1. The RMSE of the frequency estimates, as defined in (30}, as a function
of SNR, for uniformly sampled data.

The algorithm starts by first selecting a grid of fundamental
frequencies, and then adding the harmonics, thus forming a
grid containing G' fundamental frequencies and M total grid
points (thereby including both the fundamental frequencies
and their respective harmonics). In pitch estimation, one has
to pay particular attention to the so-called halfling problem
[15/16]. This problem stems from the fact that the frequencies
corresponding to {fo,2fo,...,Lofo} are also present in the
group corresponding to fo/2. This ambiguity results in that
the algorithms often prefer to choose the lower fundamental
frequency. A common solution to this problem is to include
a total variation penalty, which can easily be included in the
proposed method. However, we opt to overcome this problem
by, similarly to [[17], instead penalize the amplitudes in each
group with the power of the group’s fundamental frequency
such that the second penalty term in (T9) becomes

X 1
DW — forg=1,...,G (29)
9 i—1 ; ’ (A
125701 (1IF2 D13 + 1)

where 241 denotes the amplitude corresponding to the funda-
mental frequency of group g. Thereby, if the amplitude of the
candidate fundamental frequency is zero, the other amplitudes
in that group will be heavily penalized; thus, if there is any
competition between fy and fo/2 candidates, the method is
more likely to choose the higher fundamental frequency. This
penalty is not necessary after the algorithm has found some
initial estimates of the groups, and may be removed after
a couple of iterations. Appropriately setting hyperparameters
such as p and A is often a difficult problem. In this work, we
take a practical stance to this problem. First, we observe that if
the true @ were known, one would solve (23) with 1 = X = 0.
Thus, we should expect the method to improve if we gradually
decreased A and p. To this end, we begin setting A as in [31].
Then, after the first pruning step, we decrease A\ by half each
iteration, thereby gradually improving the estimates. Similar to
the method introduced in [31]], the extended algorithm will also
decrease 7) in each iteration. The choice of w is more critical.
A too small value of p will result in too many groups being
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Fig. 2. The RMSE of the frequency estimates as a function of SNR for
non-uniformly sampled data.

involved in the solution, and a too large value will suppress
true groups and often result in the method breaking down. If
one is not able to find a suitable value of i, one may first run
the algorithm by setting a large p; if the method breaks down,
i.e., yields an empty set, the problem is simply resolved using
a smaller value of u, preferably by decreasing the value by
a factor 2. As noted above, it may be beneficial to continue
to decrease the value of p through out the iterations. This
approach to selecting a good value of p is possible since with
the pruning step, the computational complexity is low, and it
can be further decreased by warm-starting the algorithm for
each decrease of u. As shown in the numerical section, the
proposed method is notably faster than the SURE-IR algorithm
when using a dictionary with the same number of frequencies.
This is primarily due to the fact that even though the number
of grid points are the same, the proposed method only has the
fundamental frequencies as variables; thus, when calculating
the gradient, and pruning the dictionary, these steps become
more efficient. The value of 7 is decreased with a factor 10
every time ||z(") — z0~V||2 < 5. This rule is based on the
fact that when the methods starts to converge, n should play a
smaller part in and (T9). Furthermore, since the dictionary
is pruned, it means that as the method converges, a larger ratio
of the elements in z becomes non-zero. Thus, it is reasonable
to decrease 7 to achieve a smaller bias in the z estimates.

IV. IMPLEMENTATIONAL ASPECTS

The implementation of the proposed algorithm relies on
three steps in each iteration: solving using a gradient-
based minimization, evaluating z for the new value of @
using (22), and removing redundant grid points. The last step
is implemented to reduce the computational complexity by
decreasing the size of the matrices A(6), Dy, and H. To
speed up the calculations, one may start pruning the dictionary
after merely a few iterations. This is done by removing all
the groups and all the individual frequencies in case their
magnitudes are below a certain predefined limit, say 7, which
we in this paper has selected to be 7 = 0.05.
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Fig. 3. The RMSE of the frequency estimates as a function of the data length,
N.

We coin the presented method the block super-resolution
iteratively reweighted (BSURE-IR). Algorithm 1 summaries
the proposed method, wherein Op;¢ and 1lpse denote an
MG x 1 long vector of zeros and ones, respectively, & a
predefined stopping criteria, and k& the number of restarts.

V. NUMERICAL EXAMPLES

In this section, we investigate the performance of the
proposed method and compare the results to other competing
methods. Throughout this section, we will evaluate the meth-
ods’ ability to correctly estimate the frequencies by measuring
the root-mean-squared-error (RMSE), defined as

K Ly
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where 0}, ; denotes the true parameter value, ék’ ¢ the estimated
value, and 0 the vector of parameters that are estimated. In
the following, we compare the methods’ RMSE as a function
either of the length of the signal, IV, or the signal-to-noise-
ratio (SNR), defined as

SNR = 10log <P>

o2

RMSE() = (30)

€19

where P is the power of the noiseless signal and o2 the
variance of the noise. For each SNR level or signal length,
the presented results are found using 100 Monte-Carlo simula-
tions. In the first example, an N = 30 long uniformly sampled
signal with a single pitch was considered. The fundamental
frequency was uniformly drawn between [1/7,1/3) for each
Monte-Carlo, simulation and the number of harmonics were
selected as |-+ | for each fundamental frequency, fo, with
|| denoting the floor operator. Four algorithms were consid-
ered; BSURE-IR, SURE-IR [31]], ANLS [9]], and the PEBS
algorithm [|15]]. The BSURE-IR method was allowed an initial
grid of 15 elements over the fundamental frequencies, ranging
from [0.1, 0.3], and the number of harmonics selected as %J s
for each considered fundamental frequency, fy, thus yielding
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Fig. 4. The RMSE of the frequency estimates of a multi-pitch signal

containing two pitches for non-uniformly sampled data.

a dictionary containing a total of 77 spectral lines. The initial
value of p was set to 100. The SURE-IR algorithm was also
allowed a dictionary containing 77 elements, although these
being unstructured. The ANLS was allowed 2% grid points
and was given the same range over the fundamental frequency
as BSURE-IR, as well as perfect model order knowledge.
The PEBS algorithm was given prior information about where
the fundamental frequency was positioned, given as a range
of +0.02 around the true value. In this range, PEBS was
given 1000 grid points and the initial user parameters were
set to 5 and 30 for the parameter governing the ¢; and the
{2 norms, respectively. Furthermore, for the PEBS algorithm,
only the largest peak was selected from the estimates, thus not
requiring the algorithm to make a correct model order, thereby
avoiding the problem of wrongly setting the hyperparameters.
This was not true for the other methods, where each wrong
model order estimate was recorded. The resulting RMSE may
be seen in Figure [I] where it can be seen that the proposed
method outperforms the other methods for SNR-levels of 10
dB and above. Interestingly, it can be seen that the grid-based
methods have similar performance to the BSURE-IR for low
SNR levels, whereas the two off-grid methods excel for higher
SNR levels; even SURE-IR, which does not take the harmonic
structure in consideration, actually outperforms the two grid-
based methods that actively exploits the harmonic structure. In
this setting, the BSURE-IR method failed to correctly estimate
the model order 6 times for the lowest SNR level, but managed
to correctly do so for the other SNRs. The average run-times
for the methods were 3.0 seconds for BSURE-IR, 10.5 seconds
for SURE-IR, 0.1 seconds for ANLS, and 4.7 for PEBS.

Proceeding, we investigate how the performance is affected
by non-uniformly sampled data. This scenario is not as com-
mon for audio samples, but is so in many other areas. As
ANLS does not allow for this case, the algorithm is omitted
from comparison. Using the same settings as before, but now
with non-uniform sampled data with length N = 30 sampled
from 60 measurements, the RMSE was measured for the
methods. Figure [2] shows the result. As expected, BSURE-IR
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Fig. 5. The resulting estimation of the fundamental frequencies (pitches) of
the Bach10 data set.

again outperforms the competing methods. Again, comparing
SURE-IR with PEBS, the latter seems to benefit from exploit-
ing the harmonic structure for lower SNR levels. However,
when the SNR level reaches 10 dB, the unstructured SURE-
IR again outperforms the PEBS algorithm. Here, BSURE-IR
failed to determine the correct model order 6 times for SNR 5
dB, but estimated it correctly in the other cases. The run times
in this setting were 2.5 seconds for BSURE-IR, 11.5 seconds
for SURE-IR, and 18.5 seconds for PEBS.

In the third example, we investigate the performance as
function of the length of the signal. Figure 3] shows the results
when using the same settings as before, but with N ranging
from 20 to 300 and with SNR fixed at 15 dB. Once again
it may be seen that the purposed method outperforms the
competing methods. In this scenario, we had to remove 86
outliers for PEBS to make the figure readable; 55 outliers
for N = 20, 29 for N = 25, and 2 for N = 30. BSURE-IR
estimated the wrong model order five times, once for N = 20,
N = 100, and N = 300, and twice for N = 200 . The
run times for the considered algorithms were 2.3 seconds for
BSURE-IR, 8.6 seconds for SURE-IR, and 14.2 seconds for
PEBS.

In the fourth example, we look at the case were the
signal contains multiple pitches. Here, we consider a signal
with length N = 30, non-uniformly sampled and with two
fundamental frequencies set at 0.157/3 and 0.267/3. Figure
M]shows the resulting RMSE for all frequencies in both pitches.
For the case when the SNR level is 5 dB, BSURE-IR seems
to have problem to get the model order correct, and 41 times
the estimated order model was incorrect. This only happened
8 times for the other SNR levels. For PEBS, 42 outliers were
removed to make the figure more readable. If disregarding
the 5 dB case, one can see that the BSURE-IR method
outperforms the PEBS algorithm for the multi-pitch case. Note
that, again, PEBS is given K a priori and is also zoomed in
around the correct fundamental frequencies. Also, PEBS are
now allowed 1000 grid points for each fundamental frequency.
The run times for this examples are 5.2 seconds for BSURE-



Method Accuracy | Precision | Recall Pre-trained
BSURE-IR 0.47 0.71 0.58 No
PEARLS 0.44 0.68 0.54 No
PEBS 0.39 0.56 0.51 No
PEBSI-Lite 0.45 0.63 0.61 No
BW15 0.52 0.68 0.68 Yes
ESACF 0.27 0.47 0.39 No

TABLE I

PERFORMANCE MEASURES FOR THE BSURE-IR, PEARLS, PEBS,
PEBSI-LITE, BW15, AND ESACF ALGORITHMS, WHEN EVALUATED ON
THE BACH10 DATASET.

IR and 84.3 seconds for PEBS. The increase in run time for
PEBS is mainly due to the increase in grid size.

In the final example, we evaluate the performance of the
methods on the Bach10 dataset [39]]. The data set contains ten
excerpts from chorals that were composed by Johann Sebastian
Bach. The instruments playing in the pieces are a violin, a
clarinet, a saxophone, and a bassoon, and the set contains
many sequences where the overtones overlaps. The resulting
estimates are compared to ground truth fundamental frequen-
cies, obtained by applying the single pitch estimator YIN
[40] to each separate channel. Obvious errors in the ground
truth were corrected for manually. Each excerpt is about 25-
42 seconds long. Table [I] presents the performance measures
accuracy, precision, and recall, as defined in [41]. In Table
the performance of the BSURE-IR estimator is compared
to four other multi-pitch estimators, namely PEARLS [17],
PEBS [15]], PEBSI-Lite [16], and ESACF [6], as well as a
state-of-the-art music transcription method [42], here denoted
BWI15 (after the surnames of the authors and the year of
publication). For BSURE-IR, the starting value of i was set to
1 and the number of initial fundamental frequency grid-points
30, and the maximum allowed L was set to 4. PEARLS is a
time-recursive multi-pitch estimator, with a dictionary learning
scheme that resembles a gridless method, but uses a different
cost function, and ESACF is a auto-correlation based multi-
pitch estimator. The BW15 method is a music transcription
algorithm that uses a probabilistic latent component analysis
to produce pitch estimates that are trained on databases of
music instruments. We choose to include this method into
the comparison to show the performance of a state-of-the-art
method that is pre-trained and specifically tailored for music
transcription, which is not the case for the other discussed
methods. The settings and results from ESACF and PEBSI-
Lite were taken from [[16] and for PEARLS and BW15, the
setting and results were from [17]. The PEBS settings and
results were obtained from [|18]]. Figure E] shows the resulting
BSURE-IR estimates of the fundamental frequencies from an
excerpt of J. S. Bach’s Ach, Gott und Herr performed by
a violin, a bassoon, a clarinet, and a saxophone. As can be
seen from the figure, BSURE-IR manages to capture most of
the fundamental frequencies without too many false positives.
Furthermore, from Table |I, one may see that the BSURE-
IR method scores higher on both accuracy and precision
as compared to the other multi-pitch estimators, and has
somewhat even score for recall. Not surprisingly, BW15 attains

a higher score than BSURE-IR, except for precision, where
BSURE-IR attains a slightly higher score. However, it should
be stressed that BW15 has been trained on the instruments
included in the Bach10 data set, whereas BSURE-IR has not.
We note that, as for a future research topic, it would be
interesting to try to combine the probabilistic approach of
BW15 and the more robust BSURE-IR signal model approach.

VI. CONCLUSIONS

In this paper, we present a novel off-grid multi-pitch estima-
tor. By parameterizing the dictionary containing the candidate
pitches and solving a non-convex optimization problem using
a majorization-minimization approach, an iterative method is
derived. In each iteration, the dictionary is pruned which
allows for a decreased computational complexity. The method
is evaluated on both simulated and real data. In the real
data case, the proposed method is shown to yield similar
performance as a specialized music transcription algorithm
that is pre-trained on the instruments present in the signal.
Furthermore, the proposed method is benchmarked against
other popular multi-pitch estimates, showing the preferred
performance of the proposed method.
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