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Abstract—In this work, we propose a method for estimating
statistical periodicities in symbolic sequences. Different from
other common approaches used for the estimation of periodicities
of sequences of arbitrary, finite, symbol sets, that often map
the symbolic sequence to a numerical representation, we here
exploit a likelihood-based formulation in a sparse modeling
framework to represent the periodic behavior of the sequence.
The resulting criterion includes a restriction on the cardinality
of the solution; two approximate solutions are suggested, one
greedy and one using an iterative convex relaxation strategy to
ease the cardinality restriction. The performance of the proposed
methods are illustrated using both simulated and real DNA
data, showing a notable performance gain as compared to other
common estimators.

Index Terms—Periodicity, symbolic sequences, spectral estima-
tion, data analysis, DNA

I. INTRODUCTION

SEQUENCES formed from a finite set of symbols, or
alphabet, occur in a variety of fields, such as, for instance,

in genomics, semantic analysis, and categorical time series [1],
[2]. Frequently, there is an interest in determining reoccurring
patterns, periodicities, in such sequences. For instance, in DNA
analysis, the latent periodicities in DNA sequences, commonly
assumed to be stationary in short time intervals, have been
found to be correlated with various forms of functional roles of
importance [3]–[11]. Traditional spectral estimation techniques
are not suitable for this problem as symbolic sequences lack
algebraic structures. For DNA analysis, there is no natural
ordering among the four occurring symbols, A, C, G, and
T. In earlier literature, several authors have addressed the
problem of estimating symbolic periodicity using heuristic
mappings from the symbol set to sets of complex num-
bers. After the transformation the periodicities are estimated
through standard estimation methods like, for instance, the
periodogram. However, such estimates will suffer from the
well-known high variability and/or poor resolution inherent to
the periodogram [12]. Other examples of methods that use
a mapping to transform the symbolic data include PAM- or
QPSK-based mappings, minimum entropy mapping, mapping
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equivalences, or other transformations [4]–[7], [9], [10], [13],
[14]. Generally, these mappings are computationally intensive,
and/or suffer from difficulties expanding to a larger symbol
sets, and often inadvertently impose a non-existing structure
on the symbols. In this work, we instead use a probabilistic ap-
proach, modeling the symbolic sequences using a categorical
distribution for each observation and try to infer not only the
unknown probabilities but also the unknown indices where the
distribution differs, resulting in a likelihood ratio test, which,
for a given index set, is equivalent with the well studied
problem of testing for independence in 2 × J contingency
tables, where J denotes the number of categories, see, e.g., [2].
Ideally, an estimator for this problem should be able to discern
not only whether the distribution differs at a certain periodicity,
but also how many indices have differing distributions. If
more than one statistical periodicity is considered at the
same time, the number of possible combinations of index
sets grows rapidly and an exact test will in many cases be
computationally infeasible. By formulating the estimation of
the unknown index sets, and the unknown probabilities, as a
sparse logistic regression problem, we devise two approximate
solutions to the combinatorial problem using sparse heuristics.
Namely, one greedy approach which builds up the solution
by adding the sets in a sequential manner, and one using a
convex relaxation of the cardinality constraint, resulting in
the well-known (reweighted) LASSO problem. The resulting
methods are firmly based in statistical theory, and also easily
generalized to any finite symbol set.
The remainder of the paper is organized as follows: in the next
section, we introduce the considered data model and show how
the problem of choosing which indices that show a periodic
change in the distribution can be interpreted as a sparse
estimation problem. Then, in section III, we introduce a greedy
algorithm that approximately solves the sparse problem, as
well as a convex relaxation of the original problem, which may
be efficiently solved using convex optimization algorithms.
Then, in section IV, we outline some implementation issues,
including a cyclic coordinate descent algorithm for solving the
resulting convex relaxation problem. In section V, we examine
the performance of the discussed estimators, showing the
benefits of the proposed approach as compared to previously
published methods. Finally, we conclude on the work in
section VI.

II. PROBABILISTIC MODEL FOR SYMBOLIC SEQUENCES

Consider a symbolic sequence, {sk}Nk=1, where each sym-
bol, sk, is a stochastic variable drawn from a finite set,
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A = {α1, . . . , αB}, where B denotes the size of the alphabet.
Assume that the symbols in the sequence are independent and
identically distributed, such that

pj , Prob(sk = αj) (1)

Then, if gathering a sequence of observations, x1, . . . , xN ,
into the vector x, the probability mass function (PMF) of x
is given as

q0(x|p) , Prob(s = x) (2)

=

N∏
j=1

B∏
`=1

p
[xj=α`]
` =

B∏
`=1

pG`

` (3)

where [·] denotes the Iverson’s bracket, which equals one if
the statement inside the brackets is true, and zero otherwise,
with each of the symbols appearing Gk times, and where p
and s denote the vector of probabilities and the sequence of
random variables, respectively, i.e.,

p =
[
p1 . . . pB

]T
(4)

s =
[
s1 . . . sN

]T
(5)

with (·)T denoting the transpose. As a result, the PMF is a
function depending only on the number of times each symbol
appears, and on the probability given to each symbol. In
general, the probabilities, pk, are unknown and need to be
estimated from the observed sequence. This can be done using
the maximum likelihood (ML) estimate, formed as

p̂j =
Gj
N

(6)

for j = 1, . . . , B, which is an unbiased and asymptotically
efficient estimate (see, e.g., [15, p. 475]). Furthermore, note
that a symbol α ∈ A, occurring with periodicity m, i.e., with
the symbol appearing at every mth index in the sequence,
implies that all elements of the sequence should be equal to
the symbol α in one of the m possible (disjoint) index sets

I(m, `) =

{
`, `+m, . . . , `+

⌊
N − `
m

⌋
m

}
(7)

for all offsets ` ∈ {1, . . . ,m}, where b·c denotes the rounding
down operation. This means that if a periodicity m is present
in a sequence, the sequence is clearly also periodic on the
subharmonics i.e., for every mr:th symbol, for all natural
numbers r [8]. To avoid ambiguity, we here refer to the
period as the lowest possible such periodicity. Considering
a sequence, s, with a periodicity m in the symbol α, with
offset n, this implies that all the symbols in the sequence
at index k, will equal α, for k ∈ I(m,n). Thus, it is a
deterministic and not a statistical problem to determine if
such a (deterministic) periodicity is present. However, of more
interest are typically the statistical periodicities that occur in
many forms of symbolic sequences, such as, e.g., DNA se-
quences. These are characterized by certain index sets having
different distributions, such that the sequence may contain the
periodicity over only a limited interval, and/or with some of
the periodically occurring symbols occasionally being replaced
by some other symbol, which may occur, for example, due to
the presence of measurement noise, coding errors, or some,

perhaps unknown, functional equivalence between symbols
[3]. In such cases, the PMF for a symbolic sequence might
instead be formed from two distribution, one for the indices,
say I1, corresponding to some unknown periodic index set
I(m, l), and another distribution for the complement index
set, here denoted I0. In this case, the PMF is

q1(x|p0,p1) ,
N∏
j=1

B∏
`=1

p
[xj=A`][j∈I0]
0,` p

[xj=A`][j∈I1]
1,`

=

B∏
`=1

p
G0,`

0,` p
G1,`

1,` (8)

where p0, and similarly for p1, is a parameter vector con-
taining the probabilities p0,k, denoting the probability of a
symbol, αk, occurring in the index set I0, and with G0,k and
G1,k denoting the number of times the symbol αk occurs
in the set I(m,n) and in its complement, respectively. The
corresponding ML estimates are found as

p̂0,j =
G0,j

|I0|
(9)

p̂1,j =
G1,j

|I1|
(10)

for j = 1, . . . , B, where |S| denotes the cardinality of a set
S, i.e., the number of elements in S. In a similar fashion, the
addition of more than one periodicity can be accomplished
by defining the distribution on more index sets, e.g. if one
considers M disjoint index sets, I0, . . . , IM−1, so that their
union corresponds to the entire sequence, the PMF is

q1(x|p0, . . . ,pM−1) , (11)
M−1∏
m=0

B∏
k=1

p
Gm,k

m,k (12)

where Gm,k denotes the number of times the symbol αk
occurs in the set Im. Comparing the likelihood above with
(3), it can be seen that (11) corresponds to a likelihood for
i.i.d. categorical variables, within each of the M index sets.
However, note this does not assume that the sequence consists
of i.i.d. variables, only that knowing the index sets we can
split the sequence into sub sequences of i.i.d. variables.

A similar model was considered in [8], although there they
defined a statistical periodicity, say k, to be present when all
index set I(k, `), for ` = 1 . . . , k, have different distributions,
and then set out to find the periodicity, k, by maximizing the
log-likelihood using an information-theoretic criterion penalty
term to select the correct periodicity. If doing so, and the signal
has a periodicity of k, then each index set corresponding to
a different offset also has a unique distribution, implying a
subdivision of the data into bN/kc disjoint data sets, resulting
in less data to be used to estimate these probabilities. For
multiple periodicities, i.e., several index sets with different
distributions, this results in a necessity to consider the overall
periodicity of the sequence, i.e., if periods l and k are present,
then the sequence will have a periodicity of lk, resulting
in the need for substantially more data to achieve a similar
performance as if only a single periodicity was present, as
well as the need to perform on additional analysis to identify
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the factors constituting lk. Furthermore, in the case when the
sequence contains more than two periodicities, the problem
quickly becomes infeasible. We instead want to find the
index sets where the distributions differ as much as possible
from the rest of the sequence. To that end, we recast the
estimation problem in a sparse modeling framework. To do
so, we note that one can interpret (12) as a multi-response
logistic regression problem, which, as we will show, will
be particularly useful for the case of several simultaneous
periodicities. Furthermore, this mapping allows us to consider
sequences one symbol at a time, which is particularly useful
when the periodicity in a certain symbol is sought, or if the
distribution of a particular symbol deviates especially much
on a given index set. This, when applicable, decreases the
variance of the estimated probabilities, thus improving the
detection of periodicities only occurring in one symbol, or one
subset of symbols. Rewriting (12) using logistic regression is
accomplished by modeling the probability of each observation
separately using a logistic function to map a linear model to
the interval [0, 1]. To clarify the exposition, we first consider
the case of a binary symbol set, a special case which will
be shown to be particularly useful. Thus, consider a binary
sequence which has a statistical periodicity on the indices I1,
and some other distribution on the indices I0, so that the PMF
may be expressed as

q1(x|γ(c)) ,
N∏
k=1

γk(c)
xk(1− γk(c))1−xk (13)

where γ(c) ∈ RN is a vector of probabilities, such that

Pr(sk = 1) = γk(c) (14)

and the vector c ∈ R2 models the probabilities for the index
sets I1 and its complement, I0, such that

γ(c) =
[
γ1(c) . . . γN (c)

]T
(15)

γk(c) =
eh

T
k c

1 + eh
T
k c

(16)

where

hk =


[
1 1

]T
if k ∈ I1[

1 0
]T

if k /∈ I1
(17)

Thus, there is a simple relationship between the parameters
p0,1 and p1,1 in the original model in (8), i.e.,

P (sk = 1) = p0,1 for k ∈ I0 (18)
P (sk = 1) = p1,1 for k ∈ I0 (19)

and the parameter vector, c, introduced in (13), i.e.,

log

(
p0,1

1− p0,1

)
=
[
1 0

]T
c (20)

log

(
p1,1

1− p1,1

)
=
[
1 1

]T
c (21)

It should be noted that (20) implies that the probability of a
symbol appearing in the set I0 is given by the first element of

the vector c, and, similarly, one may by substituting (20) into
(21) and simplifying, note that

log

(
p1,1

1− p1,1

)
− log

(
p0,1

1− p0,1

)
=
[
0 1

]T
c (22)

Thus, the second element in hk control the change in probabil-
ity on the index set, I1, as compared to the indices in the set,
I0, e.g., if the second element is zero, then the probabilities
are the same for both sets, whereas a positive or negative
second element implies higher or lower probabilities on the
set I1, respectively. Extending the model to allow for the
possibility of several periodicities using the logistic regression
parameterization can be achieved by adding elements to the c
vector such that each new element adjusts the probability for
an additional index set. To that end, consider the case with
M index sets, Ij , for j = 1, . . . ,M , corresponding to some
specific periodicities with their different offsets, then c ∈ RM

and every element of hTk ∈ RM is zero except the elements
where k is in the corresponding index set, i.e.,

hk,j =

{
1 k ∈ Ij
0 otherwise

(23)

for j = 1, . . . ,M , and dk,j denotes element j of the vector
dk. The resulting model can then be seen as the solution of
the following optimization criterion

maximize
c

N∏
k=1

γk(c)
xk(1− γk(c))1−xk

subject to

{
||c||0 ≤ L
γk(c) =

eh
T
k c

1+ehT c

(24)

where || · ||0 denotes the `0 (pseudo) norm, which counts
the number of nonzero elements of a vector, and L is the
maximum number of periodicities that will be included in the
model. It is worth noting that the expression for γk(c) does not
pose a restriction to the minimization, but has been included to
emphasize that the probabilities for each observation are being
modeled explicitly. Solving (24) for a given L, i.e., finding the
maximum allowed number of simultaneous periodic sets, can
be accomplished using an exhaustive search, since for each
fixed k there are (M)!/ ((M − j)!j!) index sets. For each such
set, the ML estimates may then be found using (6). However,
the dimension of the parameter vector will grow quadratically
with the maximum periodicity considered, since

M =

mmax∑
k=1

k =
mmax(mmax + 1)

2
(25)

where mmax is the maximum allowed periodicity, since each
period k has k corresponding index sets, one for each possible
offset. Thus, to evaluate the likelihood for all combinations
of index sets will soon lead to a computationally infeasible
problem. Generalization to larger symbol sets may be carried
out in a similar manner, leading to the multi-response logistic
regression model (see, e.g., [2] for a further discussion on
multi-response logistic regression). The corresponding opti-
mization problem is therefore given as the maximum of the
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log-likelihood with a cardinality constraint [16]

maximize
c1,...,cB

1

N

N∑
i=1

[
B∑
`=1

xi`(h
T
i c`)− log

(
B∑
`=1

eh
T
i c`

)]
subject to ||Ck·||0 ≤ L, for k = 1, . . . , R

(26)
where C is a matrix constructed such that its k:th column is
formed by the vector ck, and R is the number of considered
index sets, with Ck· denoting the restriction that ||Ck·||0
forces the solution to adjust the B parameters corresponding
to every index set simultaneously. Thus, the distributions can
be changed on at most L index sets. As a result, the framework
allows for flexibility in what is deemed a periodicity, e.g., one
might test for a high probability of a certain symbol appearing,
or even for if some symbols appear with low probability. Both
of these ideas will be explored further in the following, where
we outline a couple of possible algorithms for estimating
periodicities for some commonly occurring situations, namely,
estimation of an unknown periodicity, detection of an unknown
periodicity, and, finally, estimation of multiple periodicities.

III. RELAXATION OF THE CARDINALITY CONSTRAINT

For cardinality constrained, or sparse, least squares prob-
lems, there are a wide range of tools for forming approximate
solutions, with many methods falling into two broad cate-
gories, namely greedy methods that build up a solution one
variable at a time until either fitting criterion is satisfied, or
the number of variables reaches the constraint, or methods that
replace the cardinality constraint with a penalty function that
promotes solutions that have few non-zero variables [17]. This
implies that the optimization can be carried out without the
combinatorial computation complexity inherent in cardinal-
ity constrained optimization problems. Typically, the penalty
function is selected as the `1 norm, leading to a simple convex
optimization problem. In the following two subsections, we
propose both kinds of algorithms, first a greedy approach and
then an iterative convex relaxation.

A. Greedy approach

In order to form a greedy estimate of the minimization in
(26), one may note the analogy between this formulation and
that of simple hypothesis test for testing if a distribution is
different on some index sets (see also [3]). Thus, one may
form a test to determine the hypothesis that a given sequence
has a different distribution for the indices corresponding to
I(m, `), i.e., that the PMF is formed using (8), against the null
hypothesis that the entire sequence has the same categorical
distribution, such that the PMF instead follows (3), i.e.,

H0 : p0 = p1 (27)
H1 : p0 6= p1 (28)

Such a test may be formed as a likelihood ratio (LR) test (see,
e.g., [18, p. 375])

λm,`(xN ) =
q0(xN |p0,H0)

q1(x|p0,p1,H1)
(29)

where the probabilities are determined using (6) under H0,
and using (9) and (10) under H1. Thus, if one only seek to
find a single index set, a suitable choice would be the one
maximizing the LR, i.e.,

arg min
m,`

λm,`(xN ) (30)

If the number of periodicities is unknown, i.e., the problem
is one of detection and not estimation, one can allow for the
possibility of no set being added by considering that if H0 is
true, it holds asymptotically that [18, p. 489]

−2 log(λm,`(xN ))
d→ χ2

B−1 (31)

where d→ denotes convergence in distribution and χ2
k denotes

the chi-squared distribution with k degrees of freedom. Thus,
if no periodicity is present, a critical value, denoted Tα, for
the likelihood ratio, below which no periodicity is deemed to
be present, can be constructed for the likelihood ratio for each
of the tests. Since M tests are formed in order to compute
(30), and if assuming that these are independent, the critical
value may be well approximated using extreme value theory
as a quantile of the random variable

ψ = max (z1, . . . , zM ) (32)

where each zk is χ2 distributed, implying that ψ will follow
a Gumbel distribution (see, e.g., [19, p. 156]). In the case
when multiple periodicities may be present, one can extend
this procedure using a step-wise approach. To do so, first
define I1 as the index set containing all the indices in the
sequence. Then, the initial step is performed by using the
above algorithm to determine an index set I2 = Im1,`1 , where
m1 and `1 denote the initially estimated periodicity and offset,
respectively, found in the minimization of (30). In order to
determine the next periodicity, the H0 distribution is formed
from (12), using one distribution for the found index set I2
and one for all the other indices, I1 \ I2, where \ denotes set
subtraction operation. The second phase, m2, and periodicity,
`2, may be determined using (30). This procedure can then be
repeated until the zero hypothesis can not be rejected using a
suitable quantile of (32), i.e., at iteration s the corresponding
likelihood ratio test may be formed as

λ
(s)
m,`(xN ) =

q0(xN |p0, . . . ,ps−1,H0)

q1(x|p0, . . . ,ps,H1)
(33)

Note that this assumes that the sets Ik being added to the
zero hypothesis are disjoint, otherwise the likelihood would
include some data points more than once. To ensure this we
propose to only consider the indices that have not already been
added to H0 when evaluating q1(x|p0,p1,H1) in (29), i.e.,
at iteration k the sets I(m, `) are replaced with I(m, l) ←
I(m, l) \ Ik−1, for all m and `, where ← denotes that the
quantity on the left is replaced with the one on the right. The
resulting greedy algorithm, here termed the greedy Periodicity
Estimation of Categorical Sequences (PECSG) estimator, is
outlined in Algorithm 1 below, with each iteration requiring
at most O(BmmaxN ) operations.
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Algorithm 1 The PECSG estimator
1: Given a categorical sequence, x of length N
2: I0 = {1, . . . , N}
3: for s = 1, . . . do
4: {ms, `s} = arg max

m,`
λm,`(xN )

5: if λm,`(xN ) > Cα then
6: Is = Ims,`s

7: else
8: break
9: end if

10: I(m, l)← I(m, l) \ Is for all m and l
11: I0 ← I0 \ Is
12: H0 distribution is replaced with (12) using I0, . . . , Is
13: end for

B. Iterative Convex Relaxation

It is worth noting that the optimization criterion in (24) is
not convex as it restricts the parameter space to lie in a non-
convex set. A commonly used relaxation for problems of this
kind is to replace the `0 restriction with the convex `1 ball,
which by taking the negative logarithm and using the Lagrange
duality, results in the relaxed convex optimization criterion

minimize
c

N∑
k=1

−xkhTk c+ log(1 + eh
T
k c) + λ||c||1 (34)

where we have exploited the equality constraint for pk(c) and
where λ > 0 is a tuning parameter, which may be set using, for
example, cross validation (see e.g., [20]), or by an heuristic
choice using the observation following equation (44). Some
adjustments may be done to this criterion; firstly, the penalty
on c includes the first element. This is not appropriate since
the first element controls the probability for all observations,
and we have no reason to want to bias that probability towards
1/2. This is easily accomplished by only penalizing the other
elements of the vector, i.e., replacing ||c||1 with ||c||1, where
c denotes the resulting vector once the first element of c is
removed. However, the resulting expression will also have an
undesirable ambiguity due to the lack of distinction being
made between if the probability is higher or lower on the
periodic indices. For instance, consider a case when every third
index starting with 1 has the probability 0.1 of being 1, and all
other indices have probability 0.9 of being 1. Should this be
considered two periodicities of 3 with probability 0.9, or one
periodicity of 3 with probability 0.1? Such a distinction is of
course not a problem specific for this model. However, since
one is commonly interested in finding periodic indices where
the probability is either higher or lower, such an ambiguous
result would result in a non-consistent interpretation of the
estimates. Fortunately, this can be easily handled by adding a
constraint on c, ensuring that only periodicities with greater
probability of a symbol appearing are considered, i.e., ck > 0,
for k = 2, . . . ,M , where ci is the i:th element of the vector

c. This yields

minimize
c

N∑
k=1

−xkhTk c+ log(1 + eh
T
k c) + λ||c||1

subject to ck ≥ 0 for k = 2, . . . ,M

(35)

The resulting optimization is thus a sum of an affine function
and the logarithm of a sum of exponential functions, and is
thus a convex function. (see, e.g., [21, p. 93]). Thus, since the
constraints can be seen as inequalities involving inner products
with the Cartesian coordinate basis vectors, they are affine, and
therefore convex functions, and the criterion is as a result a
convex optimization problem in the standard form, as defined
in [21, p. 136]. However, the criterion in (35) will not yield
sufficiently sparse estimates, as a result of the rather coarse
approximation of the `1 norm to the desired `0 norm. Recently,
interest in non-convex penalties that are closer, in some sense,
to the `0 norm have been suggested, such as the use of the `q
norm, for 0 < q < 1 (see e.g., [22], [23]). Herein, we consider
an alternative approach where the `1 penalty is replaced with
the concave log(·) penalty. The resulting optimization is then
solved with an iteratively re-weighted `1 minimization, using
a technique suggested in [24]. The resulting algorithm thus
solves, at iteration j + 1, the minimization

min.
c

N∑
k=1

−xkhTk c+ log(1 + eh
T
k c) + λ

M∑
k=2

|ck|
|ĉ(j)k |+ ε

s. t. ck ≥ 0 for k = 2, . . . ,M
(36)

where ĉ(j)k is the k:th element of the c estimate resulting from
the j:th iteration, and ε is set as a small number to avoid
numerical problems as well as to enable zero valued elements
of c to transition from zero to non-zero values (see also
[24]). The resulting sequence of convex minimizations yields
a sufficiently sparse estimate of the periodicities (although at a
high a computational complexity if implemented directly using
a standard interior point-based solver). The resulting estimator
is in the following referred to as the Periodicity Estimation of
Categorical Sequences using Logistic regression, PECSL.
Comparing the two methods, PECSG offers a faster solution,
whereas PECSL yields better results in the case of multi-
ple periodicities. This is due to the fact that the iterative
greedy procedure in PECSG does not take into account the
overlap between the two index sets, e.g., the index sets
I(k, 1) ∩ I(l, 1) = I(kl, 1), whereas, the logistic regression
approach also takes the overlap into account in the estimation
procedure.

IV. EFFICIENT IMPLEMENTATION

In order to form an efficient solver for the minimization in
(36), we proceed to develop a cyclic coordinate descent (CCD)
algorithm. The CCD algorithm minimize the cost function in
(36) one variable at a time, in a cyclical fashion, holding the
other variables fixed at their most recent estimates. This will
thus transform the M−dimensional optimization problem into
a scheme where one instead repeatedly solves simpler one-
dimensional problems.
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Fig. 1. Rate of success in estimating deterministic periods.

It should be noted that such an approach is, in general,
converging notoriously slowly, or in some cases, not at all.
However, for the optimization problems encountered in sparse
modeling, this does no longer hold, as in fact, convergence
proofs exist [20], [25], and in many applications, CCD im-
plementations have emperically been shown to be the fastest
algorithms available [16], [26]. Below, we outline the steps
involved in a CCD algorithm for the case of ck ≥ 0, with the
other case being handled in a similar manner. Thus, consider
c
(r)
i as the r:th estimate of element i of the vector c, then, for
i > 1,

c
(r+1)
i = argmin

ci

N∑
k=1

−xkhTk c+ log(1 + eh
T
k c) + λ||c||1

= argmin
ci
−xTH(·,i)ci + λ|ci|+

N∑
k=1

log(1 + ak,ie
hk,ici)

(37)

The notation H(·,i) denotes the i:th column of the matrix H,
hk,i the i:th element of the vector hk, and

x =
[
x1 . . . xN

]T
(38)

H =
[

h1 . . . hN
]T

(39)

c =
[
c
(r+1)
1 . . . c

(r+1)
(i−1) c

(r)
i . . . c

(r)
N

]T
(40)

ak,i = exp

∑
j, j 6=i

hk,jcj

 (41)

If the maximum value of the subdifferential set

∂f0 = −xTH(·,i) + λw +

N∑
k=1

ak,ihk,ie
hk,ici

1 + ak,iehk,ici
(42)

with ci = 0 is positive and {w ∈ [−1, 1]}, then the optimum
is attained at ci = 0 for the constrained optimization problem.
On the other hand, if the maximum is negative, the stationary
point may be found using a gradient approach (since the cost

Algorithm 2 The PECSL estimator
1: Initiate c = c0
2: for r = 1, . . . do
3: for i = 1, . . . ,M do
4: if maximum of (42) ≥ 0 then
5: c

(r)
i = 0

6: else
7: Update c(r)i according to (37)
8: end if
9: end for

10: end for

function is differentiable for all positive ci). Note that this
analysis gives insight into both the sparsity promoting effect
of the `1 norm as well as the role of the tuning parameter λ,
in fact, rewriting (42) as

∂f0 = −xTH(·,i) + λw + rTi H(·,i) (43)

where ri =
[

a1,i
1+a1,i

. . .
aN,i

1+aN,i

]
can be interpreted as

probabilities for each index. Furthermore, rTi H(·,i) is the
expected number of symbols on the periodicity corresponding
to i and xTH(·,i) is the observed number of symbols on that
periodicity, thus if

|rTi H(·,i) − xTH(·,i)| < λ (44)

implying that, if the expectation for the model with ci = 0
is closer than λ to the observed number in the data, then
set c(r+1)

i = 0. The resulting CCD algorithm is outlined in
Algorithm 2.The computational cost of one iteration of the
outer loop is O(m2

maxN). Note that a significant performance
increase is often possible in batch applications, where a recur-
sive algorithm is needed, by the so called active set strategy
[20]. The strategy simply involves not updating the parameters
that are currently zero in every iteration, and perhaps only
doing so once every tenth iteration or so.

V. NUMERICAL RESULTS

We proceed to examine the performance of the proposed
likelihood-based estimators using simulated DNA sequences,
binary sequences, and measured DNA data. For DNA se-
quences, only B = 4 different symbols are present, namely
A, C, G, and T. Initially, we examine a simulated DNA
sequence containing one deterministic periodicity. Figure 1
illustrates the rate of successfully determining this periodicity
as a function of the length of the periodicity, comparing
the proposed PECSG estimator with the MEM [10], PAM
[7], QSPK [5], and SPE [27] estimators, as well as with
a Fourier-based estimator detailed in [27]. As the simulated
sequence is stationary, the window length used for the DFT-
based methods were selected to be equal to the length of the
sequence. Here, and in the following, the success rate has
been determined using 250 Monte-Carlo simulations using
N = 1000 equiprobable symbols, with the sought periodicity
being inserted appropriately. As is clear from Figure 1, the
proposed estimator succeeds in successfully determining all
the considered periodicities, whereas all the other methods
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Fig. 2. The error rate of finding the periodicity as a function of the negative
probability, 1− p1,1, and the periodicity for the SPE algorithm.

lose performance as the length of the periodicity grows. Of
the other examined estimators, the SPE estimator seems to
offer the second best performance, and we will for this reason
only show the results for this estimator in the following
comparisons, noting that all the other discussed estimators
exhibits a notably worse performance than the SPE estimator
in all the considered cases (see also [1]). Proceeding to
examine also statistical periodicities, we vary p1,1 for the
index set corresponding to the generated periodicity, with
p0,1 = 1/4 on the complement set. It may be noted that
p1,1 = 1 corresponds to a perfect periodicity, whereas p1,1 < 1
corresponds to a statistical periodicity with a probability of
each symbol being eroded, i.e., a non-perfect periodicity, being
1−p1,1. Similarly, p0,1 is the corresponding probability for the
complement set. Figures 3 and 2 show the resulting success
rate for the SPE and PECSG estimators as a function of the
periodicity and the probability p1,1, again clearly illustrating
how PECSG outperform SPE (and thus also all the other
mentioned estimators) for all periodicities and p1,1.

Next, we investigate how well PECSG and PECSL are
able to resolve two periodicities in a binary sequence. In
this case, some care needs to be taken when setting up
the simulations, as when generating two periodicities, these
may overlap or combine to create a new periodicity, e.g.,
if generating two periodicities of period six, these may be
placed such that they instead form just a single periodicity
with period three. Similarly, two periodicities with period
four and twelve may cause the resulting sequence to have
only a single periodicity of four. In order to avoid such
ambiguities in the resulting performance measure, the test
data has been generated such that it avoids this form of
ambiguities. Figure 4 illustrates the success rate of determining
both periodicities correctly, as a function of the length of the
two periodicities, with N = 500 and again using p1,1 = 3/4
and p0,1 = 1/4. Each point on the x-axis should be interpreted
as the average error for all combinations of periodicities
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Fig. 3. The error rate of finding the periodicity as a function of 1 − p1,1,
and the periodicity for the proposed PECSG method.

within the brackets, i.e., for instance (14, 14 − 17) denotes
all combinations (14, 14), (14, 15), (14, 16) and (14, 17). As
may be seen from the figure, even when the sequence contains
two periodicities of lengths up to 12, when most of the other
discussed estimators completely fail to find even a single
perfect periodicity, both PECS algorithms have a very low
proportion of errors. From the figure, one can also observe
that, as expected, the PECSL outperforms the PECSG when
there is more than one periodicity present in the sequence. For
the last simulated data experiment, we recreate a simulation
experiment similar to the one that was used in [8], where a de-
terministic periodicity of 11 and 31 are present simultaneously
in a signal generated from a 4 element set being uniformly
distributed on the other indices. As can be seen in Figure
5, the PECSG estimator achieves almost 100 % success rate
even before the method presented in [8] can start to be used,
since it requires a minimum of 11 × 31 = 341 data points.
Finally, we examine the performance of the PECSG estimator
on measured genomic data, in the form of the gene C. elegans
F56F11.4 [28]. Since genomic data is generally not stationary,
the estimate has been formed using a sliding window with
length N = 360. The results obtained by PECSG are shown
in Figure 6, where the periodicities with a likelihood ratio
greater than the 95% quantile of the maximum of M = 465
χ2 distributed random variables are shown for each symbol. In
earlier work, such as [10] and [27], a period of three was found
at around index 7000. This period was also found when using
PECSG, but when looking at the corresponding p̃, one may
note that this periodicity is actually constituted by the lack of
the symbol C, i.e., this period is detected since the symbols A,
G, and T are alternating in a non-periodic fashion, and since
C is always absent at these indices, this apparently causes the
Fourier based methods to indicate a periodicity of three. If
one is not interested in finding these sorts of periodicities,
one may restrict p1,1 to be in [1/2, 1], in the same manner
as mentioned above. This will ensure that PECSG only finds
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periodicities that are made up by an increased probability in
the presence of a symbol.

VI. CONCLUSION

In this work, we have presented a likelihood-based approach
for modeling periodicities in symbolic sequences. Modeling
the observations using a categorical distribution with peri-
odic indices, possibly having a different distribution, leads
to a difficult combinatorial problem. Here, we have proposed
two algorithms to relax the problem using sparse heuristics:
namely, one fast greedy approach which builds up the solution
set in an iterative fashion, and one based on convex relaxation
ideas, which has the benefit of a more efficient usage of the
data. Finally, we show the benefits of the proposed algorithms
as compared to previously published methods using simulation
experiments as well as with real DNA data examples.
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