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Abstract—In this short paper, we describe an efficient nu-
merical solver for the optimal sampling problem considered in
Designing Sampling Schemes for Multi-Dimensional Data [1]. An
implementation may be found on
https://www.maths.lu.se/staff/andreas-jakobsson/publications/.

Index Terms—Optimal sampling, convex optimization.

I. PROBLEM STATEMENT

For a background to the optimal sampling problem, see [1].
Consider the signal model

y(t) ∼ p(·; t, θ)

where p is a probability density function parametrized by the
sampling parameter t ∈ Rs and the parameter vector θ ∈ RP .
Here, θ is the parameter of interest to be estimated. Assume
that we get to choose to sample y at K out of N potential
samples tn, n = 1, . . . , N . We then want to solve

minimize
w∈W,µ∈RP

P∑
p=1

ψpµp

subject to
[∑N

n=1 wnFn(θ) ep
eTp µ

]
� 0

p = 1, . . . , P,

(1)

where

W =

{
w ∈ RN |

N∑
n=1

wn = K , wn ∈ [0, 1]

}
is the set of allowed weights, indicating which K samples that
are selected, µ ∈ RP correspond to the Cramér-Rao lower
bound for θ, and where ψ ∈ RP+ is a vector of non-negative
weights. Also, ep is the pth canonical basis vector. Herein, we
describe how to solve (1) efficiently by considering its dual
problem.1

II. DUAL PROBLEM

Consider the Lagrangian relaxation of (1) according to

L =
∑
p

ψpµp −
P∑
p=1

〈
Gp,

[∑N
n=1 wnFn(θ) ep

eTp µp

]〉
,

1An implementation of the solution algorithm may be found on
https://www.maths.lu.se/staff/andreas-jakobsson/publications/.

Algorithm 1 Sub-gradient ascent.

Require: Initial guess G = {Gp}Pp=1, step size α.
while Not converged do

Find w ∈ arg min
w∈W

−
∑N
n=1 wnξn(G).

for p=1:P do
µp ← eTp

(∑N
n=1 wnFn(θ)

)−1

ep.
end for
for p=1:P do
Gp ← PKψp (Gp + α∇qp(G)).

end for
G ← {Gp}Pp=1.

end while
return w ∈ arg min

w∈W
−
∑N
n=1 wnξn(G).

where Gp, p = 1, . . . , P , are dual variables, i.e., positive semi-
definite matrices of dimension P × P . Let Gp be structured
according to

Gp =

[
G̃p γp
γTp gp

]
. (2)

For notational convenience, let a dual point be denoted

G = {Gp}Pp=1 (3)

and define

ξn(G) =

〈
Fn(θ),

P∑
p=1

G̃p

〉
(4)

Then, for any w,

inf
µ
L =

{
−
∑N
n=1 wnξn(G)− 2

∑P
p=1 e

T
p γp, if gp = ψp,

−∞ otherwise.

The infimum with respect to w ∈ W is given by setting the K
entries corresponding to the K largest values of ξn(G) equal
to 1 and the rest to zero. Note that the minimizing w is not
necessarily unique. Specifically, if the K+1:th largest value of
ξn(G) is strictly smaller than the K:th largest, the minimizing



w is unique. Otherwise, there are infinitely many solutions.
Thus, the dual problem is

maximize
Gp�0

p=1,...,P

inf
w∈W

−
N∑
n=1

wnξn(G)−
P∑
p=1

eTp γp

subject to gp = ψp , p = 1, . . . , P.

Letting E = eP e
T
P , we may express the constraint as

〈Gp, E〉 = ψp , p = 1, . . . , P.

Thus, defining the family of sets parametrized by φ,

Kφ = {U | 〈U,E〉 = φ , U � 0} (5)

and letting

χψ =
{
G | Gp ∈ Kψp , p = 1, . . . , P

}
we may express the dual problem as

maximize
G∈χψ

q(G) (6)

where the dual objective function is

q(G) = inf
w∈W

−
N∑
n=1

wnξn(G)−
P∑
p=1

eTp γp. (7)

We utilize the ideas from Nedic and Ozdaglar [2] in order to
maximize the dual problem (6) using sub-gradient ascent. The
algorithm is summarized in Algorithm 1. A short derivation
of the step is presented in the following sections.

A. Sub-gradient ascent

For a dual point G ∈ χψ , a sub-gradient of q in (7) at G,
denoted ∇q(G), can be decomposed in components ∇qp(G),
where each component is given by

∇qp(G) = −
[∑N

n=1 wnFn(θ) ep
eTP µp

]
(8)

where

(w, µp) ∈ arg min
w,µp

L(µ,w,G). (9)

As noted earlier, one may retrieve a primal vector w from this
set setting the entries of w corresponding to the K largest
values of {ξn(G)}Nn=1 to 1 and the rest to zero. Noting that
any µp ∈ R is a member of the minimizing set, one may here
choose

µp = eTp

(
N∑
n=1

wnFn(θ)

)−1

ep, (10)

i.e., the µp minimizing the primal objective, while still retain-
ing primal feasibility for this choice of w. Then, a dual ascent
method guaranteeing that the dual variable G is feasible may
be realized according to

Gp ← PKψp (Gp + α∇qp(G))

for p = 1, . . . , P , where PKφ denotes projection on Kφ, as
defined in (5). How to perform this projection is described in
the next section.

B. Projection on PSD cone with constraint

Consider a set of G = {Gm}Mm=1 of M ∈ N symmetric
matrices Gm ∈ RP×P . Let C be the set of P × P positive
semidefinite matrices. Here, we are interested in computing
the projection on the set

Kφ = {U | 〈U,E〉 = φ , U ∈ C} (11)

for φ ∈ R+ and a symmetric matrix E ∈ C.

Proposition 1. The projection on Kφ, denoted PKφ is given
as

PKφ : G 7→ PC(G+ λE) (12)

where PC denotes projection on C, and where λ ∈ R is the
unique root of the equation

〈PC(G+ λE), E〉 = φ. (13)

Proof. See appendix.

Remark 1. It may here be noted that projecting on C is
simply performed by computing an eigenvalue decompostion
and setting all negative eigenvalues to zero.

C. Computational complexity

It may be noted that finding (w, µ) ∈ arg min
w,µ

L(µ,w,G) is

linear in N and quadratic in P . Performing the gradient step
is linear in P , whereas the projection on the dual feasible set
is O(P 3). To see this, it may be noted that in practice, one
may solve the equation 〈P(G+ λE), E〉 = φ using interval
halving techniques, where each evaluation of the right-hand
side requires computing one eigenvalue decomposition. The
per-iteration complexity for this scheme is thus O(P 3).



APPENDIX

Proof of Proposition 1. By definition, U = PKφ(G) solves

minimize
U∈Kφ

1

2
‖U −G‖2F , (14)

where ‖·‖F is the Frobenius norm. To arrive at a dual
formulation, consider the Lagrangian

L̃ =
1

2
‖U −G‖2F − λ (〈U,E〉 − φ)− 〈Λ, U〉,

with dual variables Λ ∈ C and λ ∈ R. We may complete the
square according to

1

2
‖U −G‖2F − 〈λE + Λ, U〉

=
1

2
‖U − (G+ λE + Λ)‖2F −

1

2
‖G+ λE + Λ‖2F −

1

2
‖G‖2F .

Then, the infimum of L̃ with respect to U is given by

inf
U
L̃ = −1

2
‖G+ λE + Λ‖2F + ‖G‖2F + φλ,

which is attained for U = G + λE + Λ. Consider the dual
function

r(Λ, λ) = −1

2
‖G+ λE + Λ‖2F + φλ. (15)

For each λ, this is maximized with respect to Λ ∈ C by

Λ = PC (−(G+ λE)) , (16)

i.e., Λ is constructed from the negative part of the eigende-
composition of G+ λE, with flipped sign. Using

G+ λE = PC (G+ λE) + PC (−(G+ λE)) , (17)

this yields

r̃(λ) = sup
Λ
r = −1

2
‖PC (G+ λE)‖2F + φλ. (18)

This one-dimensional criterion may then be maximized with
respect to λ ∈ R. However, as we from the analysis obtain
U = PC (G+ λE), we may utilize the primal feasibility
condition 〈U,E〉 = φ. Specifically, one may seek the roots
of

f(λ) = 〈PC(G+ λE), E〉 − φ. (19)

As E ∈ C, f is a continuous, monotone increasing function,
and f thus has a unique zero.

REFERENCES
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