An Introduction to Time Series Modeling, 3rd ed by Andreas Jakobsson

Errata: 201209

Below is a list of corrections/typos found so far:

- p. 33, eq (2.58), there is a conditioning too much. The equation should read

$$
V\{\mathbf{e}\}=\mathbf{R}_{\mathbf{y}, \mathbf{y}}-\mathbf{R}_{\mathbf{y}, \mathbf{x}} \mathbf{R}_{\mathbf{x}, \mathbf{x}}^{-1} \mathbf{R}_{\mathbf{y}, \mathbf{x}}^{*}=E\{V\{\mathbf{y} \mid \mathbf{x}\}\}
$$

- p. 35, Exercise 2.3, there is a conditioning too much. The equation should read

$$
V\{\mathbf{e}\}=E\{V\{\mathbf{y} \mid \mathbf{x}\}\}
$$

- p. 50 , eq (3.50), the process should be denoted y_{t}, not x_{t}, to make the following notation consistent.
- p. 80, eq (3.176) should be for $k>q$, with $r_{y}(k)=r_{y}^{*}(-k)$, for $k<0$.
- p. 133, there are missing minus signs in the equation below (4.55), which should read

$$
\begin{array}{ll}
h_{k}=0, &
\end{array}
$$

- p. 145 , there is a missing ∇ in (4.86), which should read

$$
\epsilon_{t}=A(z) \nabla y_{t}
$$

The figure in Figure 4.29(b) is also incorrect; Figure 1.1 below shows the corrected figure. The suggested model should use either $(d, r, s)=(0,0,0)$ or $(d, r, s)=(0,0,1)$.

- p. 224 , plus should be minus in eq (6.9) and (6.10), so that these read

$$
\begin{aligned}
& r_{y}(2)-w_{1} r_{y}(0)-w_{2} r_{y}(1)=0 \\
& r_{y}(1)-w_{1} r_{y}(1)-w_{2} r_{y}(0)=0
\end{aligned}
$$

Also, in eq (6.14), there is one minus sign too much; w_{2} should be

$$
w_{2}=\frac{\rho_{y}(1)}{1-\rho_{y}^{2}(1)}
$$

- p. 274, Exercise 7.4, the text should say "for $p=1, \ldots, 5$ ".

Figure 1.1: The estimated crosscorrelation.

- p. 323 , solution to problem 2.3 , there is a conditioning too much. The solution should read

$$
\begin{aligned}
V\{\mathbf{e}\} & =E\left\{V\left\{\mathbf{y}-\mathbf{m}_{\mathbf{y} \mid \mathbf{x}} \mid \mathbf{x}\right\}\right\}+V\left\{E\left\{\mathbf{y}-\mathbf{m}_{\mathbf{y} \mid \mathbf{x}} \mid \mathbf{x}\right\}\right\} \\
& =E\{V\{\mathbf{y} \mid \mathbf{x}\}\}+V\left\{E\{\mathbf{y} \mid \mathbf{x}\}-\mathbf{m}_{\mathbf{y} \mid \mathbf{x}}\right\} \\
& =E\{V\{\mathbf{y} \mid \mathbf{x}\}\}
\end{aligned}
$$

- p. 329, solution to problem 3.7, there is a c_{1} missing. The sentence should read: "The process (b)-(f)-(i) is an MA(1) process, with $r(1)=\sigma^{2} c_{1}$, yielding $c_{1}=0.9$ according to the figure."
- p. 334, missing minus sign. The equation should read

$$
\begin{aligned}
& \rho_{x, y}(\tau) \triangleq \rho_{x, y}(t, t-\tau)=\frac{r_{x, y}(t, t-\tau)}{\sqrt{r_{x}(0) r_{y}(0)}} \\
&=\frac{r_{x, y}(t, t-\tau)}{\sigma_{x}^{2} \sqrt{h_{0}^{2}+h_{1}^{2}+\frac{\sigma_{e}^{2}}{\sigma_{x}^{2}}}= \begin{cases}\frac{h_{0}}{\sqrt{h_{0}^{2}+h_{1}^{2}+\frac{\sigma_{c}^{2}}{\sigma_{X}^{2}}}} & \tau=0 \\
\frac{h_{1}}{\sqrt{h_{0}^{2}+h_{1}^{2}+\frac{\sigma_{e}^{2}}{\sigma_{X}^{2}}}} & \tau=-1 \\
0 & \text { otherwise }\end{cases} } . \begin{array}{l}
\\
0
\end{array} \\
& \\
& \\
&
\end{aligned}
$$

