An Introduction to Time Series Modeling, 2nd ed by Andreas Jakobsson

Errata: 180105

Below is a list of corrections/typos found so far:

- p. 33, equation (2.55) should read

$$
\mathbf{R}_{\mathbf{z}, \mathbf{z}}=\left[\begin{array}{ll}
\mathbf{R}_{\mathbf{x}, \mathbf{x}} & \mathbf{R}_{\mathbf{x}, \mathbf{y}} \\
\mathbf{R}_{\mathbf{y}, \mathrm{x}} & \mathbf{R}_{\mathbf{y}, \mathbf{y}}
\end{array}\right]
$$

- p. 39, the definition of $r_{y}(k) \equiv C\left\{y_{t}, y_{t-k}\right\}$ should not contain a *; see the definition in (2.9). This problem also occurs in equations (3.6), (7.3), (7.6), in the text just below (7.6), (7.16), and (7.20).
- p. 145 , eq. (4.85) is missing a ∇. It should read: $w_{t}=A(z) \nabla x_{t}$.
- p. 223 , eq. (6.2) should also contain an intercept c, i.e.,

$$
\hat{y}_{t+k \mid t}=\sum_{\ell=0}^{n} w_{\ell} y_{t-\ell}+c
$$

- p. 224, eq. (6.14) and (6.15) are missing minus signs. They should be

$$
\begin{aligned}
w_{2} & =-\frac{\rho_{y}(1)}{1-\rho_{y}^{2}(1)} \\
\hat{y}_{3 \mid y_{1}, y_{2}} & =-\frac{c_{1}^{2}}{1+c_{1}^{2}+c_{1}^{4}} y_{1}-\frac{c_{1}+c_{1}^{3}}{1+c_{1}^{2}+c_{1}^{4}} y_{2}
\end{aligned}
$$

- p. 301, eq. (8.148) is missing a minus sign. It should read:

$$
\left.\begin{array}{r}
\mathbf{C}_{t+2 \mid t}=\left[\begin{array}{rccccc}
-\hat{\mathbf{y}}_{t+1 \mid t} & -y_{t} & \ldots & -y_{t-4} & 0 & e_{t}
\end{array} e_{t-1}\right. \\
u_{t+2} \\
u_{t+1}
\end{array} u_{t} u_{t-2} \quad u_{t-3}\right]\left[\begin{array}{l}
\end{array}\right.
$$

- p. 338, the first sentence in solution 4.4 should be: The process $\nabla_{s} x_{t}$ is stationary with the autocovariance $r_{y}(\tau)$.
- p. 340, â should be

$$
\hat{a}=D\left\{\left(\left(\sum t_{k}^{2}\right) s_{1}-\left(\sum s_{k} t_{k}\right) t_{1}\right) y_{1}+\ldots+\left(\left(\sum t_{k}^{2}\right) s_{N}-\left(\sum s_{k} t_{k}\right) t_{N}\right) y_{N}\right\}
$$

- p. 359, Solution 7.2 , to polynomial should be $1-1.4 z^{-1}+0.76 z^{-2}$.
- p. 369, Solution 8.8, the last two equations should read

$$
\begin{aligned}
\mathbf{K}_{t} & =\mathbf{P}_{t} \mathbf{x}_{t}\left(\mathbf{x}_{t}^{T} \mathbf{P}_{t} \mathbf{x}_{t}+\sigma_{e}^{2}\right)^{-1} \\
\mathbf{P}_{t+1} & =\phi\left(\mathbf{I}-\mathbf{K}_{t} \mathbf{x}_{t}^{T}\right) \mathbf{P}_{t} \phi^{T}+\mathbf{R}_{v}=\phi^{2}\left(\mathbf{I}-\mathbf{K}_{t} \mathbf{x}_{t}^{T}\right) \mathbf{P}_{t}+\mathbf{R}_{v}
\end{aligned}
$$

