An Introduction to Time Series Modeling by Andreas Jakobsson

Errata: 151228

Below is a list of corrections/typos found so far:

- p. 26, in lemma 2.1, both a and b are assumed to be real-valued deterministic constants.
- p. 32, first line, missing transpose. The sentence should read "thus lying in the (left) null space of \mathbf{x}, i.e., $\mathbf{e} \in \mathcal{N}\left(\mathbf{x}^{T}\right)$ ".
- p. 33, missing transposes: the vectors in Theorem 2.3 should be defined as $\mathbf{z}=\left[\begin{array}{ll}\mathbf{x}^{T} & \mathbf{y}^{T}\end{array}\right]^{T}$ and $E\{\mathbf{z}\}=\left[\begin{array}{ll}\mathbf{m}_{\mathbf{x}}^{T} & \mathbf{m}_{\mathbf{y}}^{T}\end{array}\right]^{T}$.
- p. 42, eq. (3.17), should read $r_{x, y}\left(t_{1}, t_{2}\right)=r_{x, y}\left(t_{1}-t_{2}, 0\right) \triangleq r_{x, y}(\tau)$, with $\tau=t_{1}-t_{2}$.
- p. 46, eq (3.34), missing a term in the last equality, the equation should read:

$$
\begin{aligned}
E\left\{r_{y}^{b}(k)\right\} & =\frac{1}{N} E\left\{\psi_{k}\right\}=\frac{N-k}{N}\left(r_{y}(k)-V\left\{\hat{m}_{y}\right\}\right) \\
& =r_{y}(k)-\frac{k}{N} r_{y}(k)-\frac{N-k}{N} V\left\{\hat{m}_{y}\right\}
\end{aligned}
$$

- p. 59 , above (3.87), the variable substitution should be $m=t-\ell$.
- p. 120 , last line, wrong sign, $\nabla \nabla_{12} y_{t}=\left(1-c_{1} z^{-1}\right)\left(1-c_{12} z^{-12}\right) e_{t}$.
- p. 130, just above (4.46), the text indexExample!Voiced speech should be removed.
- p. 139, eq. (4.70), should read $w_{t}=A(z) \nabla x_{t}$.
- p. 152 , missing conjugate transpose; (5.52) should read:

$$
\mathbf{X}=\left[\begin{array}{lll}
\mathbf{x}_{p+1} & \ldots & \mathbf{x}_{N}
\end{array}\right]^{*}
$$

- p. 166, typos in formula. Eq (5.15) should read

$$
\left[\mathbf{I}_{\boldsymbol{\theta}}\right]_{k, \ell}=\left[\frac{\partial \mathbf{m}_{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}_{k}}\right]^{T} \boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1}\left[\frac{\partial \mathbf{m}_{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}_{\ell}}\right]+\frac{1}{2} \operatorname{tr}\left\{\boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1} \frac{\partial \boldsymbol{\Sigma}_{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}_{k}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1} \frac{\partial \boldsymbol{\Sigma}_{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}_{\ell}}\right\}
$$

- p. 180, Figure 5.5(a) should appear as in Figure 1.1(a), on the next page.

Figure 1.1: Cumulative periodogram test for (a) a white noise, and (b) for an AR process, with the corresponding 1% and 5% confidence intervals.

- p. 243 , the dimension of \mathbf{y}_{t} should be m, not p, in the equation at the top of the page, reading

$$
\begin{aligned}
f(\mathbf{Y}) & =\prod_{t=1}^{N}\left[(2 \pi)^{m} \operatorname{det}(\boldsymbol{\Sigma})\right]^{-1 / 2} \exp \left\{-\frac{1}{2}\left[\mathbf{y}_{t}-\mathbf{X} \boldsymbol{\theta}\right]^{T} \boldsymbol{\Sigma}^{-1}\left[\mathbf{y}_{t}-\mathbf{X} \boldsymbol{\theta}\right]\right\} \\
& =\left[(2 \pi)^{m} \operatorname{det}(\boldsymbol{\Sigma})\right]^{-N / 2} \exp \left\{-\frac{1}{2} \sum_{t=1}^{N}\left[\mathbf{y}_{t}-\mathbf{X} \boldsymbol{\theta}\right]^{T} \boldsymbol{\Sigma}^{-1}\left[\mathbf{y}_{t}-\mathbf{X} \boldsymbol{\theta}\right]\right\}
\end{aligned}
$$

- p. 253 , Problem $7.1, \S E\left\{\hat{\boldsymbol{\Sigma}}_{\mathbf{y}}\right\}$ should read $E\left\{\hat{\boldsymbol{\Sigma}}_{\mathbf{y}}\right\}$.
- p. 254, Table $7.5, p$ in the first column should be ordered from 1 to 5 , not 0 to 4 . The same in table D. 4 in the solution on p. 341.
- p. 268 , example 8.4. There are errors in this example; it will be removed.
- p. 280, eq (8.148), the last time indices are missing. It should read:

$$
\hat{\mathbf{y}}_{t+k \mid t}=\mathbf{C} \hat{\mathbf{x}}_{t+k \mid t}=\mathbf{C A}^{k} \hat{\mathbf{x}}_{t \mid t}
$$

- p. 289, line 2, the size of \mathbf{A} should be $\mathbf{A} \in \mathbb{C}^{m \times m}$.
- p. 303, solution 3.1, missing minus sign. In the second and third line, it should read $\omega_{0}(t-k)$ and $-\omega_{0} k$, respectively.
- p. 314, solution 3.14, sign error. The first equation should read:

$$
r_{z}(\tau)=C\left\{x_{t}+y_{t}, x_{t-\tau}+y_{t-\tau}\right\}=r_{x}(\tau)+r_{y}(\tau)
$$

- p. 317, solution 4.4, sign error. The second equation should read:

$$
\begin{aligned}
r_{y}(\tau) & =E\left\{\left(x_{t}-x_{t-S}\right)\left(x_{t-\tau}-x_{t-\tau-S}\right)\right\} \\
& =2 r_{x}(\tau)-r_{x}(\tau+S)-r_{x}(\tau-S)
\end{aligned}
$$

- p. 328, solution 5.9 , missing square in fourth equation. It should read:

$$
r_{y}(0)=\frac{b_{0}^{2} \lambda^{2}}{1-a_{0}^{2}}+\frac{1+c_{0}^{2}-2 a_{0} c_{0}}{1-a_{0}^{2}} \sigma^{2}
$$

- p. 341, solution 8.2. The state equation should read:

$$
\mathbf{x}_{t+1}=\left[\begin{array}{cccc}
-1 & -2 & 1 & 0 \\
-3 & -4 & 0 & 1 \\
-5 & -6 & 0 & 0 \\
-7 & -8 & 0 & 0
\end{array}\right] \mathbf{x}_{t}+\left[\begin{array}{ll}
8 & 8 \\
8 & 8 \\
8 & 8 \\
8 & 8
\end{array}\right] \mathbf{e}_{t}
$$

It is worth noting that the example is poorly chosen as the AR-polynomial is unstable.

