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Online Estimation of Multiple Harmonic Signals
Filip Elvander, Johan Swärd, and Andreas Jakobsson

Abstract—In this paper, we propose a time-recursive multi-
pitch estimation algorithm using a sparse reconstruction frame-
work, assuming that only a few pitches from a large set of can-
didates are active at each time instant. The proposed algorithm
does not require any training data, and instead utilizes a sparse
recursive least squares formulation augmented by an adaptive
penalty term specifically designed to enforce a pitch structure
on the solution. The amplitudes of the active pitches are also
recursively updated, allowing for a smooth and more accurate
representation. When evaluated on a set of ten music pieces, the
proposed method is shown to outperform other general purpose
multi-pitch estimators in either accuracy or computational speed,
although not being able to yield performance as good as the
state-of-the art methods, which are being optimally tuned and
specifically trained on the present instruments. However, the
method is able to outperform such a technique when used without
optimal tuning, or when applied to instruments not included in
the training data.

Index Terms—Adaptive signal processing, dictionary learning,
group sparsity, multi-pitch estimation, sparse recursive least
squares

I. INTRODUCTION
The problem of estimating the fundamental frequency, or

pitch, arises in a variety of fields, such as in speech and audio
processing, non-destructive testing, and biomedical modeling
(see, e.g., [1]–[6], and the references therein). In such appli-
cations, the measured signal may often result from several
partly simultaneous sources, meaning that both the number of
pitches, and the number of overtones of each such pitch, may
be expected to vary over the signal. Such would be the case,
for instance, in most forms of audio signals. The resulting
multi-pitch estimation problem is in general difficult, with
one of the most notorious issues being the so-called sub-
octave problem, i.e., distinguishing between pitches whose
fundamental frequencies are related by powers of two. Both
non-parametric, such as methods based on autocorrelation
(see, e.g., [7] and references therein), and parametric multi-
pitch estimators (see, e.g., [2]) have been suggested, where
the latter are often more robust to the sub-octave problem,
but rely heavily on accurate a priori model order information
of both the number of pitches present and the number of
harmonic overtones for each pitch Regrettably, the need for
accurate model order information is a significant drawback, as
such information is typically difficult to obtain and may vary
rapidly over the signal. In order to alleviate this, several sparse
reconstruction algorithms tailored for multi-pitch estimation
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have recently been proposed, allowing for estimators that
do not require explicit knowledge of the number of sources
or their harmonics; for example, in [8], the so-called PEBS
estimator was introduced, exploiting the block-sparse structure
of the pitch signal. This estimator was then further developed
in [9], such that the likelihood of erroneously selecting a sub-
octave in place of the true pitch was lowered, while also
introducing a self-regularization technique for selecting the
penalty parameters. Both these estimators form implicit model
order decisions based on one or more tuning parameters that
dictate the relative weight of various penalties. As shown in the
above cited works, the resulting estimators are able to allow
for (rapidly) varying model orders, without significant loss of
performance. Earlier works based on sparse representations
of signals also include works such as [10], which considers
atomic decomposition of audio signals in both the time and
the frequency domains.

There have also been methods proposed for multi-pitch
estimation and tracking that are source specific, i.e., tailored
specifically to sources, e.g., musical instruments, that are
known to be present in the signal. In [11], the authors perform
multi-pitch estimation on music mixtures by, via a probabilistic
framework, matching the signal to a pre-learned dictionary of
spectral basis vectors that correspond to instruments known
to be present in the signal. A similar source specific idea
was used in [12], where pitch estimation was performed
by matching the signal to spectral templates learned from
individual piano keys. Other methods specifically designed
to handle multi-pitch estimation for pianos include [13]–[15].
Another field of research is designing multi-pitch estimators
based on a two-matrix factorisation of the short-time Fourier
transform, i.e., a non-negative matrix factorization (see, e.g.,
[16]–[18]). The method has also been used in the sparse
reconstruction framework, for instance to learn atoms in order
to decompose the signal [19]. A common assumption is also
that of spectral smoothness within each pitch, which may also
be exploited in order to improve the estimation performance
(see, e.g., [13], [17], [20], [21]).

In many audio processing applications, pitch tracking is of
great interest and despite being a problem that has been studied
for a long time, it still attracts a lot of attention. Over the
years, there have been many different approaches for tracking
pitches; some of the more recent include particle filters [22],
neural networks [23], and Bayesian filtering [24]. Many of
these methods require a priori model order information, and/or
are limited to the single pitch case. The sparse pitch estimators
in [8], [9] are robust to these model assumptions, and allow for
multiple pitches. However, these estimators process each data
frame separately, treating each as an isolated and stationary
measurement, without exploiting the information obtained
from earlier data frames when forming the estimates. To allow



2

for such correlation over time, the PEBS estimator introduced
in [8] was recently extended to exploit the previous pitch esti-
mates, as well as the power distribution of the following frame,
when processing the current data frame [25]. In this work, we
extend on this effort, but instead propose a fully time-recursive
problem formulation using the sparse recursive least squares
(RLS) estimator. The resulting estimator does not only allow
for more stable pitch estimates as compared to earlier sparse
multi-pitch estimators, as more information is used at each
time-point, but also decreases the computational burden of
each update, as new estimates are formed by updating already
available ones. On the other hand, sparse adaptive filtering is a
field attracting steadily increasing attention, with, for instance,
the sparse RLS algorithm being explored for adaptive filtering
in, e.g., [26]–[28]. Other related studies include [29], wherein
the authors use a projection approach to solve a recursive
LASSO-type problem, and [30], which introduced an online
recursive method allowing for an underlying dynamical signal
model and the use of sparsity-inducing penalties. Recursive
algorithms designed for group-sparse systems have also been
introduced, such as the ones presented in [31]–[33], but to
the best of our knowledge, no such technique has so-far been
applied to the multi-pitch estimation problem. This is the
problem we strive to address in this paper. It should be noted
that the here presented work differs from many other multi-
pitch estimators in that it only exploits the assumption that the
signal of interest is generated by a harmonic sinusoidal model.
Recently, quite a few methods for multi-pitch estimation
adhering to the machine learning paradigm have been proposed
(see, e.g., [34], [35]). In these methods, a model is trained on
labeled signals, such as, e.g., notes played by individual music
instruments, extracting features from the training data that are
then used for classification in the estimation stage. As opposed
to this, the method presented here is not dependent on being
trained on any dataset prior to the estimation.

Our earlier efforts on multi-pitch estimation based on sparse
modeling, such as the PEBS [8] and PEBSI-Lite [9] algo-
rithms, have focused on frame-based multi-pitch estimation
techniques, with PEBS introducing the use of block sparsity
to form the pitch estimates, and PEBSI-Lite refining these
ideas and introducing a self-regularization technique to select
the required user parameters. In this work, we build on the
insights from these algorithms, and expand these ideas by
introducing a method that allows for a sample-by-sample
updating, in the form of an RLS-like sparse estimator, thereby
allowing the estimates to also exploit information available
in earlier data samples. The sub-octave problems experienced
by PEBS and later alleviated by PEBSI-Lite, with the use
of a total-variation penalty enforcing spectral smoothness, is
here addressed using an adaptively re-weighted block penalty.
Furthermore, we introduce a signal-adaptive updating scheme
for the dictionary frequency atoms that allows the proposed
method to, e.g., track frequency modulated signals, and alle-
viates grid mismatches otherwise commonly experienced by
dictionary based methods.

The remainder of this paper is organized as follows; in the
next section, we introduce the multi-pitch signal model and
its corresponding dictionary formulation. Then, in Section III,

we introduce the group sparse RLS formulation for multi-pitch
estimation, followed by a scheme for decreasing the bias of
the harmonic amplitude estimates in Section IV. Section V
presents a discussion about various algorithmic considerations.
Section VI contains numerical examples illustrating the per-
formance of the proposed estimator on various audio signals.
Finally, Section VII concludes upon the work.

A. Notation

In this work, we use lower case non-bold letters such as x
to denote scalars and lower case boldface letter such as x to
denote vectors. Upper case bold face letters such as X are used
for matrices. We let diag (x) denote a diagonal matrix formed
with the vector x along its diagonal. Sets are denoted using
upper case calligraphic letters such as A. If A and B are sets
of integers, then xA denotes the sub-vector of x indexed by
A. For matrices, XA,B denotes the matrix constructed using
the rows indexed by A and columns indexed by B. We use
the shorthand XA to denote XA,A. Furthermore, [̄·], [·]H , and
[·]T denotes complex conjugation, conjugate transpose, and
transpose, respectively. Also, |A| is the cardinality of the set
A, and |x| denotes the number of elements in the vector x,
unless otherwise stated. Finally, we for vectors x ∈ Cn let
‖x‖` denote the `-norm, defined as

‖x‖` =

 n∑
j=1

|xj |`
1/`

(1)

and use i =
√
−1.

II. SIGNAL MODEL

Consider a measured signal1, y(t), that is generated accord-
ing to the model y(t) = x(t) + e(t), where

x(t) =

K(t)∑
k=1

Lk(t)∑
`=1

wk,`(t)e
i2πfk(t)`t (2)

with K(t) denoting the number of pitches at time t, with fun-
damental frequencies fk(t), having Lk(t) harmonics, wk,`(t)
the complex-valued amplitude of the `th harmonic of the kth
pitch, and where e(t) denotes a broad-band additive noise.
It should be stressed that the number of pitches, as well as
their fundamental frequencies, and the number of harmonics
for each source, may vary over time. It is worth noting that
we here assume a harmonic signal, such as detailed in (2);
however, as shown in the numerical section, the proposed
method does also work well for somewhat inharmonic signals,
such as, e.g., those resulting from a piano.

We here attempt to approximate the measured signal using a
sparse representation in an over-complete harmonic basis, see,
e.g., [36]. Specifically, as in [8], [9], the signal sources are ap-
proximated using a sparse modeling framework containing P

1For notational and computational simplicity, we here consider the discrete-
time analytic signal of any real-valued measured signal.
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candidate pitches, each allowed to have up to Lmax harmonics,
such that

x(t) ≈
P∑
p=1

Lmax∑
`=1

wp,`(t)e
i2πfp(t)`t (3)

where the dictionary is selected large enough so that (at least)
K(t) candidate pitches, fp(t), reasonably well approximate
the true pitch frequencies (see also, e.g., [37], [38]), i.e., such
that P � maxtK(t) and Lmax � maxt,k Lk(t). It should be
noted that as the signal is assumed to contain relatively few
pitches at each time instance, the resulting amplitude vector
will be sparse, although with a harmonic structure reflecting
the overtones of the pitches. Furthermore, it may be noted that
the frequency grid-points, fp(t), are allowed to vary with time,
which will here be implemented using an adaptive dictionary
learning scheme. Using this framework, the pitches present in
the signal at time t may be implicitly estimated by identifying
the non-zero amplitude coefficients, wp,`(t).

III. GROUP-SPARSE RLS FOR PITCHES

Exploiting the structure of the signal, we introduce the
group-sparse adaptive filter, w(t), which at time t is divided
into P groups according to

w(t) =
[

wT
1 (t) ... wT

P (t)
]T

(4)

wp(t) =
[
wp,1(t) ... wp,Lmax(t)

]T
(5)

implying that, ideally, only K(t) sub-vectors wp(t) will be
non-zeros at time t. In order to achieve this, the filter is formed
as

ŵ(t) = arg min
w

gt(w) + ht(w) (6)

where ŵ(t) denotes the solution of (6), gt(w) the regular RLS
criterion, (see, e.g., [39]), formed as

gt(w) =
1

2

t∑
τ=1

λt−τ
∣∣y(τ)−wTa(τ)

∣∣2 (7)

and ht(w) a sparsity inducing penalty function. Note that
a similar adaptive filter formulation for estimating sparse
data structures was introduced in [27]. However, whereas
[27] considered sparse signals, we in this work expand this
approach to also consider block sparsity, and specifically the
pitch structure. As a result, the dictionary is here formed as

a(t) =
[

aT1 (t) ... aTP (t)
]T

(8)

ap(t) =
[

ei2πfp(t)t ... ei2πfp(t)Lmaxt
]T

(9)

and λ ∈ (0, 1) being a user-determined forgetting factor. The
choice of the forgetting factor λ will reflect assumptions on the
variability of the spectral content of the signal, with λ close
to 1 implying an almost stationary signal, whereas a smaller
value will allow for a quicker adaption to changes in the
spectral content. The sparsity inducing function, ht(w), should
be selected as to encourage a pitch-structure in the solution; in
[9], which considered multi-pitch estimation on isolated time

frames, this function, which then was not a function of time,
was selected as

h(w) = γ1 ‖w‖1 + γ2

P∑
p=1

∥∥FwGp
∥∥

1
(10)

where F is the first difference matrix and Gp is the set of
indices corresponding to the harmonics of the candidate pitch
p. The second term of this penalty function is the `1-norm of
the differences between consecutive harmonics and acts as a
total variation penalty on the spectral envelope of each pitch.
Often referred to as the sparse fused LASSO [40], this penalty
was in [9] used to promote solutions with spectral smoothness
in each pitch, although requiring some additional refinements
to achieve this. To allow for a fast implementation, we will
here instead consider the time-varying penalty function

ht(w) = γ1(t) ‖w‖1 +

P∑
p=1

γ2,p(t)
∥∥wGp∥∥2

(11)

where γ1(t) and γ2,p(t) are non-negative regularization param-
eters. This penalty, often called the sparse group LASSO [41]
when combined with a squared `2-norm model fit term, is
reminiscent of the one used in the PEBS method introduced
in [8], and belongs to the class of methods utilizing mixed
norms for sparse signal estimation (see, e.g., [42]). The second
term of this penalty function, the pitch-wise `2-norm, has a
group-sparsifying effect, encouraging solutions where active
harmonics are grouped together into a few number of pitches.
As the frequency content of different pitches may be quite
similar due to overlapping, or close to overlapping, harmonics,
the group penalty thus prevents erroneous activation of isolated
harmonics, while still allowing the different groups to retain
harmonics shared by different sources (see also [8], [9]). In the
case of overlapping harmonics in the signal, i.e., the presence
of two pitches which share at least one harmonic, the `2-
norm will favor solutions of the optimization problem (6)
in which the powers of these harmonics are shared among
the two pitches. The precise level of sharing is decided by
the relative powers of the unique harmonics of each pitch so
that the pitch having unique harmonics with more power will
also be assigned a larger share of the power corresponding
to the overlapping harmonics. In the case of the the two
pitches having unique harmonics with equal combined power,
the power of the overlapping harmonics will also be shared
equally. However, when, as in [8], using fixed penalty param-
eters γ1(t) and γ2,p(t), the resulting estimate has been shown
to be prone to mistaking a pitch for its sub-octave (see also
[9]). In order to discourage this type of erroneous solutions,
we will herein introduce a way of adaptively choosing the
group sparsity parameter, γ2,p(t), as further discussed below.

We note that gt(w), as defined in (7), may be expressed in
matrix form as

gt(w) =
1

2

∥∥∥Λ1/2
1:t y1:t −Λ

1/2
1:t A1:tw

∥∥∥2

2
(12)

where

yτ :t =
[
y(τ) ... y(t)

]T
(13)

Aτ :t =
[

a(τ) ... a(t)
]T

(14)



4

and with Λ1:t = diag
([

λt−1 λt−2 ... 1
])

. To simplify
notation, define

R(t) , AH
1:tΛ1:tA1:t (15)

r(t) , AH
1:tΛ1:ty1:t . (16)

With these definitions, the minimization in (6) may be formed
using proximal gradient iterations, (see, e.g., [43]), such that
the jth iteration may be expressed as

ŵ( j+1)(t) = arg min
w

1

2s(t)

∥∥∥ν( j ) −w
∥∥∥2

2
+ ht(w) (17)

where

ν( j ) = ŵ( j )(t) + s(t)
[
r(t)−R(t)ŵ( j )(t)

]
(18)

with s(t) denoting the step-size. We note that this update is
reminiscent of the one presented in [27], which considers the
problem of `1-regularized recursive least squares, although
it should be noted that the `1-norm for complex vectors in
[27] is defined to be the sum of the absolute values of the
real and imaginary parts separately, whereas we here use the
more common definition, as given by (1). In [27], the authors
motivate their minimization algorithm by casting it as an EM-
algorithm using reasoning from [44], as well as some further
assumptions about properties of the signal. By studying the
zero sub-differential equations for (17), it can be shown that
the closed form solution for each group p can be computed
separately as (see, e.g., equations (54)-(55) and (32)-(38) in
[8]; for further details, see also [41])

ν̃
( j )
Gp = S1

(
ν

( j )
Gp , s(t)γ1(t)

)
(19)

ŵ
( j+1)
Gp (t) = S2

(
ν̃

( j )
Gp , s(t)γ2,p(t)

)
(20)

where S1 (·) and S2 (·) are the soft thresholding operators
corresponding to the `1- and `2-norms, respectively, i.e.,

S1 (z, α) =
max (|z| − α, 0)

max (|z| − α, 0) + α
� z (21)

S2 (z, α) =
max (‖z‖2 − α, 0)

max (‖z‖2 − α, 0) + α
z (22)

where, in (21), |z| denotes the vector obtained by taking
the absolute value of each element of the vector z, the max
function operates element-wise on the vector z, and � denotes
element-wise multiplication. Furthermore, as R(t) and r(t)
can be expressed as

R(t) =

t∑
τ=1

λt−τa(τ)aH(τ) (23)

r(t) =

t∑
τ=1

λt−τy(τ)ā(τ) (24)

these entities can be updated according to

R(t) = λR(t− 1) + a(t)aH(t) (25)
r(t) = λr(t− 1) + y(t)ā(t) , (26)

when new samples become available. Here, (̄·) denotes com-
plex conjugation.

IV. REFINED AMPLITUDE ESTIMATES

In general, the sparsity promoting penalty function ht(w)
will introduce a downward bias on the magnitude of the
amplitude estimates formed by (6). However, as the support
of ŵ(t) will reflect the fundamental frequencies present in the
signal, we can refine the amplitude estimates by minimizing
a least squares criterion. As this problem only considers
amplitudes of harmonics of pitches that are believed to be
in the signal, we do not need to use any sparsity inducing
penalties and can therefore avoid the magnitude bias. This will
be analogous to estimating the amplitudes of each harmonic
using recursive least squares assuming that the support of the
filter is known. To this end, let

S(t) =
⋃

p∈A(t)

Gp (27)

A(t) =
{
p |
∥∥ŵGp(t)

∥∥
2
> 0
}
, (28)

i.e., A(t) is the set of active pitches determined by the sparse
filter ŵ(t), at time t, and S(t) is the index set corresponding
to the harmonics of these pitches. Let w̆(t) denote the refined
amplitude estimates at time t. Given ŵ(t), and thereby S(t),
we update this filter according to

w̆k(t) = 0 , k /∈ A(t) (29)

w̆S(t)(t) = arg min
w∈C|S(t)|

wHRS(t)w −wHrS(t) − rHS(t)w

+ ξ
∥∥w − w̆S(t)(t− 1)

∥∥2

2
(30)

where RS(t)(t) is the |S(t)|×|S(t)| matrix constructed by the
rows and columns of R(t) indexed by S(t) and rS(t)(t) is the
|S(t)| dimensional vector constructed by the elements of r(t),
indexed by S(t). The second term of (30) is a proximal term
that will promote a smooth trajectory for the magnitude of
the filter coefficients, where the parameter ξ > 0 controls the
smoothness. This type of smoothness-promoting penalty has
earlier been used, for instance, to enforce temporal continuity
in NMF applications [45]. To avoid inverting large matrices,
we split the solving of (30) into A(t) problems of size Lmax
using a cyclic coordinate descent scheme (see also, e.g., [26]).
To this end, define the index sets

Qp = S(t) \ Gp , p ∈ A(t) , (31)

i.e., the indices corresponding to harmonics that are not part
of pitch p. Considering only terms in the cost function in (30)
that depend on harmonics of the pth pitch, we can form an
update of the corresponding filter coefficients according to

w̆Gp(t) = arg min
w∈CLmax

wHRGpw −wHr( p ) − r( p )Hw

+ ξ
∥∥w − w̆Gp(t− 1)

∥∥2

2

(32)

where

r( p ) = rGp −RGp,Qp
w̃Qp

. (33)

The vector w̃Qp
∈ C|Qp| contains the (partially updated) filter

coefficients that correspond to other pitches than p, i.e.,

w̃Gq =

{
w̆Gq (t) if updated
w̆Gq (t− 1) if not updated

(34)
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for q 6= p. By setting the gradient of (32) with respect to w
to zero, we find the update of w̆Gp(t) to be

w̆Gp(t) =
(
RGp + ξ I

)−1
(
r( p ) + ξ w̆Gp(t− 1)

)
. (35)

V. ALGORITHMIC CONSIDERATIONS

We proceed to examine some implementation aspects of
the presented algorithm, first discussing the appropriate choice
of the penalty parameters, then possible computational speed-
ups, as well as ways of adaptively updating the used pitch
dictionary.

A. Parameter choices

In order to discourage solutions containing erroneous sub-
octaves, we here propose to update the group penalty param-
eter, in iteration j of the filter update (17), as

γ2,p(t) = γ2(t) max

1,
1∣∣∣ŵ j−1

p,1 (t)
∣∣∣+ ε

 (36)

where
∣∣∣ŵ j−1
p,1 (t)

∣∣∣ is the estimated amplitude of the first har-
monic of group p, obtained in iteration j−1, with ε� 1 being
a user-specified parameter selected to avoid a division by zero.
In this paper, we use ε = 10−5. As sub-octaves will typically
have missing first harmonics, such a choice will encourage
shifting power from the sub-octave to the proper pitch. Similar
types of re-weighted penalties have earlier been used to
enhance sparsity in the estimated signal (see, e.g., [46], [47]).
Studies using many different kinds of pitch signals indicate
that the overall performance of the algorithm is relatively
insensitive to the choice of the parameter s(t), which may
typically be selected in the range s(t) ∈

[
10−5, 10−3

]
. Here,

we use s(t) = 10−4. The choice of the penalty parameters
γ1(t) and γ2(t) can be made using inner-products between
the dictionary and the signal. Letting ∆ denote the time-lag,
define

η(t, µ) = µ
∥∥Λ1:∆AH

t−∆:tyt−∆:t

∥∥
∞ (37)

where µ ∈ (0, 1). A good rule of thumb is choosing γ1(t)
in the neighborhood of (37) with µ = 0.1, whereas a cor-
responding reasonable value for γ2(t) is µ = 1. Empirically,
the performance of the algorithm has been seen to be robust
to variations of these choices of µ. This method emulates
choosing the values of the penalty parameters based on the
correlation between the signal and the dictionary in a finite
window. Here, the window length, ∆, is determined by the
forgetting factor, λ, and by how much correlation one is
willing to lose as a result from the truncation. For example,
selecting

∆ =
log(0.01)

log λ
(38)

will yield a window such that the excluded samples will
contribute to less than 0.01 of the correlation. It should be
noted that for smoothly varying signals, γ1(t) and γ2(t) only
need to be updated infrequently.

B. Iteration speed-up

As the signal is assumed to have a sparse representation in
the dictionary a(t), one may expect updates of the coefficients
of many groups, here indexed by q, to result in zero amplitude
estimates. As such groups do not contribute to the pitch
estimates, these groups would preferably be excluded from
the updates in (17)-(18). If assuming the support of w(t) to
be constant for all t, one could thus sequentially discard such
groups from the updating step, and thereby decrease compu-
tation time. However, as generally pitches may disappear and
then re-appear, as well as drift in frequency over time, we
will here only exclude the groups q from the updating steps
temporarily. That is, if at time τ , we have

∥∥ŵGq∥∥2
< ε̃, where

ε̃� 1, the group q is considered not to be present in the signal
and is therefore excluded from the updating steps for a waiting
period, T . After that period, it is again included in the updates,
allowing it to again appear in the signal. Defining the set U ,
indexing the groups that are considered active, the group q is
adaptively included and excluded from U depending on the
size of

∥∥ŵGq∥∥2
. If the signal can be assumed to have slowly

varying spectral content, meaning that the support of w(t) is
also varying slowly, the waiting period T may be chosen to
be quite long, as to improve the computational efficiency. In
general, choosing T as to correspond to a few milliseconds
allows for a speed-up of the algorithm while at the same time
enabling it to track the time evolution of w(t).

C. Dictionary learning

In general, a signal’s pitch frequencies may vary over time,
for instance, due to vibrato. Applying the filter updating
scheme using fixed grid-points will therefore result in rapidly
changing support of the filter or energy leakage between
adjacent blocks of the filter, here indexed by p. In order to
overcome this problem, and to allow for smooth tracking
of pitches over time, we propose a scheme for adaptively
updating the dictionary of candidate pitches. This adaptive ad-
justment scheme also allows for the use of a grid with coarser
resolution than would otherwise be possible. Let T = {τk}k
be the set of time points in which the dictionary is updated. As
only groups ŵGp(τk) with non-zero power are considered to be
present in the signal, one only has to adjust the fundamental
frequencies of these. Assuming that the current estimate of
such a candidate pitch frequency is fp(τk−1), one only needs
to consider adjusting it on the interval fp(τk−1) ± 1

2δf,k(t),
where δf,k(t) denotes the current grid-point spacing. The
update can be formed using the approximate non-linear least
squares method in [48], [2], where, instead of Lmax, one uses
the harmonic order corresponding to the non-zero components
of ŵGp(τk). This refined estimate is obtained by first forming
the residual, and adding back the current group of harmonics,
whereafter the approximate non-linear least squares method
is applied to update the frequencies. The adjusted frequency
fp(τk) is then used to update the dictionary on the time interval
[τk, τk+1). After updating the dictionary, the filter coefficient
estimates will, due to the recursive nature of the method, be
partly based on the old dictionary and partly on the updated
one. It is thus very likely that after the dictionary update
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Algorithm 1 The PEARLS algorithm
1: Initialise ŵ(0)← 0, R(0)← 0 , r(0)← 0
2: t← 1
3: repeat {Recursive update scheme}
4: R(t)← λR(t− 1) + a(t)aH(t)
5: r(t)← λr(t− 1) + y(t)ā(t)
6: j ← 0
7: ŵ( j )(t)← ŵ(t− 1)
8: repeat {Proximal gradient update}
9: ν( j ) ← ŵ( j )(t) + s(t)

[
r(t)−R(t)ŵ( j )(t)

]
10: ŵ( j+1)(t)← arg min

w

1
2s(t)

∥∥ν( j ) −w
∥∥2

2
+ ht(w)

11: j ← j + 1
12: until convergence
13: ŵ(t)← ŵ( j )(t)
14: Determine A(t) and S(t)
15: w̆k(t)← 0 , k /∈ A(t)
16: w̆S(t)(t) = arg min

w∈C|S(t)|
wHRS(t)w −wHrS(t) − rHS(t)w

+ξ
∥∥w − w̆S(t)(t− 1)

∥∥2

2
17: Update active set U
18: if t ∈ T then
19: Update dictionary
20: end if
21: t← t+ 1
22: until end of signal

the phase component of the two filter coefficient parts will
differ. To avoid this, we instead incorporate the phase into the
dictionary, thus obtaining a filter coefficient with zero phase.
This is accomplished by estimating the phases at the same time
as the frequencies are updated in the dictionary updating step.
Each estimated phase is then multiplied with the corresponding
column of the dictionary, thus including the phases into the
dictionary. This update corresponds to changing (8) and (9) to

a(t,φ) =
[

aT1 (t,φ1) ... aTP (t,φP )
]T

(39)

ap(t,φp) =
[

ei2πfp(t)t+iπφp1 ... ei2πfp(t)Lmaxt+iπφpLmax

]T
(40)

where

φ =
[
φT1 . . . φTP

]T
(41)

φp =
[
φTp1 . . . φpLmax

]T
(42)

with φp` denoting the phase of the `th harmonic of the pth
pitch. With this formulation the phases are incorporated into
the dictionary, thus rendering the amplitudes real valued.

Together with the discussed algorithmic considerations, the
presented time-recursive multi-pitch estimator is detailed in
Algorithm 1. The algorithm is termed the Pitch Estimation
using dictionary-Adaptive Recursive Least Squares (PEARLS)
method2.

2An implementation in MATLAB may be found at http://www.maths.lu.se/
staff/andreas-jakobsson/publications/.

Fig. 1. Pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and∥∥w̆Gp (t)
∥∥
2

as produced by PEARLS when applied to a simulated two-pitch
signal with fundamental frequencies 302 and 369 Hz, respectively, deviating
from the original dictionary grid points by 2 and 1 Hz respectively.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
PEARLS algorithm using both simulated signals and real
audio recordings.

A. Simulated signals

To demonstrate the effect of the smoothing parameter, ξ,
as well as the ability of PEARLS to smoothly track the
amplitudes of pitches, we first consider an illustrative example
with a two-pitch signal. Figure 1 shows the time evolution of
the pitch frequency and pitch norm estimates, i.e., estimates of
fp(t) and

∥∥w̆Gp(t)
∥∥

2
, as produced by PEARLS when applied

to a two-pitch signal with fundamental frequencies 302 and
369 Hz, respectively, where both pitches are constituted by
5 harmonics each. Both pitches enter the signal after 90 ms,
reaching their maximum amplitudes momentarily and keeping
them for the rest of the signal duration. The signal was
sampled at 11 kHz. The settings for PEARLS was Lmax = 10,
λ = 0.995, and the smoothing parameter was ξ = 104. The
original pitch frequency grid was chosen so that the true
pitch frequencies deviated from the closest grid points by
2 and 1 Hz, respectively. As can be seen from the figure,
the estimate initially, before the pitch signals appear, contains
several spurious pitch estimates, but then quickly finds the
pitch signals when these appear in the data. At this point,
the spurious peaks are suppressed and the estimates are seen
to well follow the true pitch envelopes. It is worth noting
that both the response time and the steady state variance
of the estimates will be influenced by the choice of the
smoothing parameter, ξ. Figures 2 and 3 illustrate this effect
by considering the response time, defined as the time required
for the PEARLS amplitude estimate to reach 95% of its peak
value, and the steady state amplitude variance, respectively.
The signal considered is the same as in Figure 1. As can be
seen from the figures, a higher value of ξ implies a longer
response time for PEARLS, while at the same time promoting
a more smooth pitch norm trajectory, just as could be expected.

http://www.maths.lu.se/staff/andreas-jakobsson/publications/
http://www.maths.lu.se/staff/andreas-jakobsson/publications/
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The PEARLS algorithm is not restricted to form estimates
of stationary pitches; it is also able to cope with amplitude and
frequency modulated signals. In Figure 4, PEARLS has been
applied to a two-pitch signal with fundamental frequencies that
oscillate according to sine waves with frequencies 2 and 3 Hz
on the intervals 327 ± 2 Hz and 394 ± 3 Hz, respectively.
Also, the pitch norms are not constant, but are amplitude
modulated according to a Hamming window. As can be seen,
PEARLS is able to track the two pitches smoothly both in
frequency and in pitch norm. Here, the pitches consisted of
5 and 7 harmonics, respectively. The signal was sampled at
11 kHz, with PEARLS using the same settings as above. As
comparison, Figure 6 presents a corresponding plot for the
multi-pitch estimator ESACF [7], using recommended settings.
As ESACF only estimates pitch frequencies, pitch norm esti-
mates have been obtained using least squares, assuming known
harmonic orders. ESACF is a frame based estimator and the
signal was therefore here subdivided into 30ms windows.
As can be seen, the ESACF estimates deviate from the true
pitch frequencies, causing the amplitude estimates to degrade.
Figure 5 demonstrates the usefulness of using the dictionary

learning procedure. In this figure, PEARLS is again applied

Fig. 4. Pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and∥∥w̆Gp (t)
∥∥
2

, as produced by PEARLS when applied to a simulated two-pitch
signal with fundamental frequencies that oscillate according to sine waves.

Fig. 5. Pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and∥∥w̆Gp (t)
∥∥
2

, as produced by PEARLS when applied to a simulated two-pitch
signal with fundamental frequencies that oscillate according to sine waves.
Here, the dictionary learning scheme is excluded from Algorithm 1.

to the signal with two frequency modulated pitches, but
this time the dictionary learning scheme is excluded from
Algorithm 1. As can be seen in the figure, PEARLS is still
able to estimate the frequency content, as well as the pitch
norms, but the tracking is now performed by different elements
of w̆(t), as the frequency modulation causes the different
candidate pitches to become activated and then deactivated,
with the activation-deactivation cycles following the periods of
the frequency modulation. Also, there is some power-sharing
between adjacent pitch groups of w̆(t) at time points where
the frequency modulating sinusoids change sign. In contrast,
the dictionary learning scheme allows for a much smoother
tracking as the movable dictionary elements counters the
activation-deactivation phenomenon, which can be observed
in Figure 4.

B. Real audio

We proceed to evaluate the performance of PEARLS on
the Bach10 dataset [49]. This dataset consists of ten ex-
cerpts from chorals composed by J. S. Bach, and have been
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Fig. 6. Pitch frequency, i.e., estimates of fp(t), as produced by ESACF
when applied to a simulated two-pitch signal with fundamental frequencies
that oscillate according to sine waves. The pitch norms, i.e.,

∥∥w̆Gp (t)
∥∥
2

,
have been estimated by applying least squares to the ESACF pitch frequency
estimates using oracle harmonic orders.

TABLE I
PERFORMANCE MEASURES FOR THE PEARLS, PEBSI-LITE, BW15, AND

ESACF ALGORITHMS, WHEN EVALUATED ON THE BACH10 DATASET.

PEARLS PEBSI-Lite BW15 ESACF

Accuracy 0.437 0.449 0.515 0.269
Precision 0.683 0.631 0.684 0.471
Recall 0.548 0.609 0.675 0.386

arranged to be performed by an ensemble consisting of a
violin, a clarinet, a saxophone, and a bassoon, with each
excerpt being 25-42 seconds long. The algorithm settings
for PEARLS were λ = 0.985, ξ = 103, Lmax = 6, and
the dictionary was updated every 10 ms using 45 ms of
past signal samples. Each music piece, originally sampled at
44.1 kHz, was down-sampled to 11.025 kHz. The PEARLS
estimates were compared to ground truth values with a time-
resolution of one reference point every 30 ms. The ground
truth fundamental frequencies were obtained by applying the
single-pitch estimator YIN [50] to each separate channel with
manual correction of obvious errors. The results are presented
in Table I, presenting values of the performance measures
Accuracy, Precision, and Recall, as defined in [51]. As in
[51], an estimated fundamental frequency is associated with a
ground truth fundamental frequency if it lies within a quarter-
tone, or 3%, of the ground truth fundamental frequency. For
comparison, Table I also includes corresponding performance
measures for the PEBSI-Lite [9] and ESACF algorithms. The
values for PEBSI-Lite and ESACF were originally presented
in [9], and the settings for these algorithms are the same as is
presented there. Also presented in Table I are performance
measures obtained when applying the method presented in
[35], hereafter referred to as BW15, after the authors and
year of publication, to the same dataset. Being trained on
databases of music instrument, this method uses probabilistic
latent component analysis to produce pitch estimates and is
specifically tailored to estimate pitches in music signals. The
frequency resolution of the obtained estimates corresponds to
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Fig. 7. Ground truth for a signal consisting of two trumpets and two pianos.
The amplitude of each pitch, i.e., the pitch norm, is illustrated by the color
of each track. The amplitudes have been normalized so that the maximal
amplitude is 1.

that of the Western chromatic scale, i.e., to the keys of the
piano. As can be seen, PEARLS clearly outperforms ESACF
and performs on par with PEBSI-Lite when considering these
measures, although it should be stressed that PEARLS has
significantly lower computational complexity than PEBSI-Lite.
The BW15 methods performs better than the other presented
methods, including PEARLS, for this dataset. This is as the
performance of the BW15 estimate was formed when using an
a posteriori thresholding of the obtained estimate, optimally
selecting the threshold level as to maximize the performance
measures; this in order to illustrate the best possible perfor-
mance achievable for BW15. However, several other choices of
possible threshold levels resulted in BW15 performing worse
than both PEARLS and PEBSI-Lite. Furthermore, the BW15
estimator is sensitive to mismatches between the examined
signal and the training dataset used to construct its priors. This
is illustrated by applying the BW15 and PEARLS estimators
to a signal consisting of two (harmonic) trumpet notes and two
(inharmonic) piano notes. The trumpets are playing the notes
A4 and D[5, corresponding to the fundamental frequencies
440 and 554.37 Hz, whereas the pianos are playing the notes
E4 and G]4, corresponding to the fundamental frequencies
329.65 and 415.3 Hz. The signal was sampled at 11.025 kHz.
The ground truth pitches can be seen in Figure 7. Here, the
amplitude, i.e., the pitch norm, of each pitch is illustrated by
the color of each track. The amplitude has been normalized
so that the maximum amplitude is equal to one. The corre-
sponding estimates produced by PEARLS (using the same
settings as for the Bach10 dataset) and BW15 are presented in
Figures 8 and 9, respectively. As can be seen from Figure 8,
PEARLS is able to correctly identify both the trumpet and the
piano pitches, despite the pianos being inharmonic and thereby
differing from the assumed signal model, as given in (2). Note
that PEARLS is also able to smoothly track the frequency
modulation caused by that trumpets are playing with vibrato,
which can be more clearly seen from the zoomed-in portions of
Figures 7 and 8. In contrast, as seen in Figure 9, BW15 is able
to correctly identify the piano pitches (note that pianos were
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Fig. 8. Estimates produced by PEARLS when applied to a signal with two
trumpets as well as two pianos. The amplitude of each pitch, i.e., the pitch
norm, is illustrated by the color of each track. The amplitudes have been
normalized so that the maximal amplitude is 1.

included in the training dataset used by the authors of [35]),
but instead of identifying the sinusoidal content corresponding
to the trumpets (which are not in the training dataset) as
originating from only two pitches, several of the individual
harmonics are instead being assigned individual pitches. It
may be noted that the method does not accurately represent
the vibratos; this as the estimates of BW15 are restricted to
correspond to the keys of the piano. It should further be noted
that the pitches indicated as being the most significant by
BW15 are not those corresponding to the true fundamental
frequencies, but instead higher order harmonics. This problem
is arguably due to the mismatch between the content of the
signal and the database used to train the method. Thus, for
this example, it is not possible to recover the true pitches
by thresholding the solution of BW15, as the thresholding
would eliminate true pitch candidates before getting rid of the
erroneous ones. Although the estimates produced by BW15
could arguably be improved by extending its training data
to also include trumpets, this example illustrates that basing
estimation on exploiting the features of a signal model, as
PEARLS does, can be beneficial in terms of the generality of
the estimator, even in the face of slight deviations from the
assumed signal model, which in this case takes the form of
inharmonicity for the pianos. It can be noted that an interesting
future development would be to combine the benefits from
training a hidden Markov model, as is done in BW15, with
the more robust approach in PEARLS.

Another recent method that would be of interest to consider
in this respect would be the one presented in [21], which
also exhibits some conceptual similarities with the herein
presented algorithm. Notably, the sparsifying role played by
the `1-norm herein is in [21] formed by instead determining
the significant spectral peaks using an estimate of the noise
floor. The pitch selection, herein formed using the group-
wise `2-norm, is in [21] made by matching spectral content
with that of components in a large training data set, which is
also used to measure the power concentration for low-order
harmonics, as well as a synchronicity measure. The relative
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Fig. 9. Estimates produced by BW15 when applied to a signal with two
trumpets as well as two pianos. The magnitudes of the estimates are illustrated
by the color of the pitch tracks. The magnitudes have been normalised so that
the maximal magnitude is 1.

weighting of these components is selected using training
data. Using a greedy approach, the method in [21] then
iteratively adds candidate pitches to the estimate; the power
allocation between pitches that have overlapping harmonics
is resolved using an interpolation scheme utilizing the power
of harmonics unique to each candidate pitch. In contrast, the
number of active pitches is herein decided by the optimal point
of (6), where candidate pitches not contained in the signal
should be assigned zero power. It can also be noted that the
optimization problem presented here does not favor spectral
smoothness; rather, the `2-norm will favor collecting as much
power as possible into a few candidate pitches. The power of
overlapping harmonics will therefore tend to be allocated to
pitches with more prominent unique harmonics.

Using a MATLAB implementation of PEARLS on a 2.68
GHz PC, the average running time for the Bach pieces was 20
minutes. The Bach pieces were on average 33 seconds long3.
For PEBSI-Lite, the average running time was 54 minutes,
with the signal being divided into non-overlapping frames of
length 30 ms.

As an illustration of the performance of PEARLS on the
Bach10 dataset, Figures 10 and 11 present the estimated
fundamental frequencies obtained using ESACF and PEARLS,
respectively, for the piece Ach, Gott und Herr, as compared to
the ground truth for each instrument. Here, in order to make
a fair comparison of the computational complexities of the
estimators, the ESACF estimate was computed on windows of
length 30 ms, where two consecutive windows overlapped in
all but one sample. Although ESACF can arguably be applied
to windows with smaller overlap, this setup meant that ESACF
would produce pitch tracks with the same time resolution as
PEARLS. This resulted in an average running time of 11
minutes per music piece, that is, about half that of PEARLS.
As can be seen from the figures, PEARLS is considerably

3We note that the current implementation has not exploited that the filter
updating step (17) can be done for all P candidate pitches in parallel.
Similarly, the computations for PEBSI-Lite can also be parallelized, as each
time frame can be processed in isolation.
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Fig. 10. Pitch tracks produced by ESACF when applied to a 25 seconds
excerpt of J. S. Bach’s Ach, Gott und Herr performed by a violin, a clarinet,
a saxophone, and a bassoon.

better at tracking the instruments than ESACF. In Figure 12,
the corresponding results for BW15 are shown. The figure
has been truncated at 1000 Hz to simplify inspection, although
pitch estimates with fundamental frequencies higher than 1000
Hz did occur repeatedly. From the figure, it is clear that BW15
is better able to track the bassoon (which is included in the
method’s training data) than either PEARLS or ESACF. It can
also be noted that the discrete nature of the BW15 estimator
prevents it from tracking smaller frequency variations, such as
vibratos.

VII. CONCLUSIONS

In this work, we have presented a time-recursive multi-
pitch estimation algorithm, based on a both sparse and group-
sparse reconstruction technique. The method has been shown
to be able to accurately track multiple pitches over time,
in fundamental frequency as well as in amplitude, without
requiring prior knowledge of the number of pitches nor the
number of harmonics present in the signal. Furthermore,
we have presented a scheme for adaptively changing the
signal dictionary, thereby providing robustness against grid
mismatch, as well as allowing for smooth tracking of fre-
quency modulated signals. We have shown that the proposed
method yields accurate results when applied to real data,
outperforming other general purpose multi-pitch estimators in
either estimation accuracy and/or computational speed. The
method has further been shown to be robust to deviations
from the assumed signal model, although it is not able to
yield performance as good as that achievable by a state-of-
the art method being optimally tuned and specifically trained
on the present instruments. However, the method is able
to outperform such a technique when used without optimal
tuning, or when applied to instruments not included in the
training data.
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