PhD course: “Statistical inference for partially
observed stochastic processes”, February—March

2016

http://www.maths.lu.se/index.php?id=110381

This PhD-level course will present an overview of modern inferential
methods for partially observed stochastic processes, with emphasis on state-
space models (also known as Hidden Markov Models).

Necessary prerequisites: basics of stochastic processes, Bayesian meth-
ods and Monte Carlo methods (e.g. Markov Chain Monte Carlo, Metropolis-
Hastings method). For example having taken the courses Time series Analy-
sis (FMS051/MASM17) and Monte Carlo and Empirical Methods for Stochas-
tic Inference (FMS091/MASM11).

Students assessment: To pass the course students must solve at least 3
out of 6 home assignments and a final approved written project report/presentation.
More in detail, students must solve at least one assignment for each of the
following three areas (a)-(b)-(c) where (a) = particle methods and approxi-
mate Bayesian computation; (b) = data imputation for diffusions and iter-
ated filtering; (c) = inference for Gaussian Markov random fields. The final
project will be about freely choosing a method or article to study more in
detail (e.g. studying an extension to some method considered during the
course) and implement corresponding simulations.

This document illustrate the course content. For practical info please re-
fer to the course webpage http://www.maths.lu.se/index.php?id=110381.

Inference and data imputation for diffusion and other
continuous time processes

Lecturer: Erik Lindstrom.


http://www.maths.lu.se/index.php?id=110381
http://www.maths.lth.se/matstat/kurser/fms051mas216/
http://www.maths.lth.se/matstat/kurser/fms051mas216/
http://www.maths.lth.se/matstat/kurser/fms091mas221/
http://www.maths.lth.se/matstat/kurser/fms091mas221/
http://www.maths.lu.se/index.php?id=110381

The inference problem for diffusion processes is generally difficult due to
the lack of closed form expressions for the likelihood function. However, the
problems becomes manageable if data is imputed between the observations.
This lecture will cover the basic ideas, some important variance reduction
techniques (with a focus towards bridge samplers) as well as pointing to-
wards future extensions.

Assignment: Implement the Durham-Gallant sampler for a Cox-Ingersoll
Ross diffusion.

Key references

[1] Pedersen, A. R. (1995). A new approach to maximum likelihood estima-
tion for stochastic differential equations based on discrete observations.
Scandinavian Journal of Statistics, 55-71.

[2] Durham, G. B., and Gallant, A. R. (2002). Numerical techniques for
maximum likelihood estimation of continuous-time diffusion processes.
Journal of Business & Economic Statistics, 20(3), 297-338.

[3] Lindstrém, E. (2012). A regularized bridge sampler for sparsely sampled
diffusions. Statistics and Computing, 22(2), 615-623.

Iterated filtering

Lecturer: Erik Lindstrom.

General state space models are defined in terms of a latent Markov pro-
cess, from which partial observations can be obtained. This typically means
that the latent process must be recovered in order to estimate parameters.
An old idea, going back at least half a century, is to treat the model param-
eters as latent processes themselves. This idea has been tested repeatedly
with varying success, but no proof was presented before the introduction of
iterated filtering.

The lecture will present an historical overview, while trying to explain
why older methods have failed. These experiences are then used to intro-
duce the “iterated filtering’®’ method for which strong consistency can be
proved. We also look at some extensions that are far more efficient from a
computational point of view.

Assignment: Implement the basic algorithm for a univariate linear,
Gaussian model and compare with simpler alternatives.



Key references

[1] Ionides, E. L., Bhadra, A., Atchadé, Y., and King, A. (2011). Iterated
filtering. The Annals of Statistics, 39(3), 1776-1802.

[2] Lindstrém, E., Ionides, E., Frydendall, J., and Madsen, H. (2012, July).
Efficient iterated filtering. In System Identification (Vol. 16, No. 1, pp.
1785-1790).

[3] Lindstrom, E. (2013). Tuned iterated filtering. Statistics & Probability
Letters, 83(9), 2077-2080.

[4] Doucet, A., Jacob, P. E., and Rubenthaler, S. (2013). Derivative-free
estimation of the score vector and observed information matrix with
application to state-space models. arXiv preprint arXiv:1304.5768.

[5] Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S., and King, A. (2015).
Inference for dynamic and latent variable models via iterated, perturbed
Bayes maps. Proceedings of the National Academy of Sciences, 112(3),
719-724.

Particle Marginal Methods for parameter inference

Lecturer: Umberto Picchini.

Sequential Monte Carlo methods (SMC, a.k.a. particle filters) have revo-
lutionised and simplified the problem of filtering for nonlinear, non-Gaussian
models. For example SMC can be used to filter the “signal” in state-space
models out of noisy measurements by using a set of N computer-generated
“trajectories” (“particles”) of the system’s state. SMC can also be used to
construct an approximation to the likelihood function for the parameters
0 of the state-space model of interest. A striking result due to Andrieu
and Roberts (2009) is when SMC is used in the context of Bayesian infer-
ence for #: if an unbiased SMC approximation to the likelihood function
is plugged into the posterior distribution for 6, it is possible to construct a
standard MCMC algorithm for sampling ezactly from such posterior distri-
bution, regardless of the specific (finite) value of N. This is the so called
“pseudo-marginal approach” which is a special case of the class of algorithms
known as Particle MCMC (PMCMC).

Assignment: TBA

References denoted with an asterisk (*) are recommended and “friendly”
(review articles, monographies or blog entries). The remaining ones are the



original (notoriously impenetrable) technical references which are not really
necessary for a first understanding.

Key references

[1] Andrieu, C., and Roberts, G. O. (2009). The pseudo-marginal approach
for efficient Monte Carlo computations. The Annals of Statistics, 697-
725.

[2] (*) D. Wilkinson’s blog. The pseudo-marginal approach to “exact ap-
proximate” MCMC algorithms, https://goo.gl/W4bvH2

[3] (*) D. Wilkinson’s blog. Marginalisation, importance sampling and the
bootstrap particle filter, https://goo.gl/R8BT3q

[4] (*) P. Jacob (2015) Sequential Bayesian inference for implicit hidden
Markov models and current limitations. ESAIM: Proceedings and Sur-
veys, Vol. 51, p. 24-48, http://goo.gl/03sPRV

[5] (*) N. Kantas, A. Doucet, S. Singh, J. Maciejowski, N. Chopin (2015)
On Particle Methods for Parameter Estimation in State-Space Models.
Statistical Science 30(3) 328-351, http://goo.gl/HglaCW

[6] (*)S. Sarkka (2013). Bayesian Filtering and Smoothing. Cambridge Uni-
versity Press. This monography is freely available at http://goo.gl/
Imt5CM

Approximate Bayesian Computation

Lecturer: Umberto Picchini.

Approximate Bayesian Computation (ABC) is a class of algorithms al-
lowing for inference in complex models with “intractable likelihoods”. Specif-
ically, with “complex” we mean models for which we are unable to make use
of the likelihood function (because it is analytically unavailable or compu-
tationally too expensive to evaluate). However, it is often the case that
it is possible — and computationally “cheap” — to simulate from the data
generating model, and this implies sampling “simulated data” from the like-
lihood function. By repeatedly drawing from the likelihood we can construct
“likelihood-free” methods for Bayesian inference even when we cannot eval-
uate the likelihood pointwise (but we can somehow sample from it!). In the
most typical scenarios, such methods only result in approximate Bayesian
inference, though they can also produce exact inference under some very
stringent conditions.


https://goo.gl/W4bvH2
https://goo.gl/R8BT3q
http://goo.gl/O3sPRV
http://goo.gl/Hg1aCW
http://goo.gl/1mt5CM
http://goo.gl/1mt5CM

Assignment: TBA

All the following references are friendly, introductory review papers.

Key references

[1] Marin, J. M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approxi-
mate Bayesian computational methods. Statistics and Computing, 22(6),
1167-1180.

[2] Sisson, S. A., & Fan, Y. (2011). chapter “Likelihood-free MCMC” from
Handbook of Markov Chain Monte Carlo, Chapman & Hall. Freely avail-
able at http://arxiv.org/pdf/1001.2058.pdf

[3] Sunnaker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., &
Dessimoz, C. (2013). Approximate Bayesian computation. PLoS Comput
Biol, 9(1), e1002803.

Gaussian Markov Random Fields

Lecturer: Johan Lindstrom.

A common model for spatial data consists of a latent Gaussian field with
(non-)Gaussian observations. The dependence structure in the latent pro-
cess is often described using a parametric covariance function. For large
datasets the computation, storage and inversion of the covariance matrix
becomes a major issue. Replacing the covariance with a suitable Markov
random field representation leads to latent fields with sparse precision ma-
trices which have computational benefits. This lecture will cover the basic
ideas of models with latent Gaussian processes, discussing alternatives to
covariance matrices for large data. We will then discuss the formulation of
latent Gaussian processes as solutions to stochastic partial differential equa-
tions (SPDE). The links between SPDEs and older conditional and simul-
taneous autoregressive models (CAR & SAR), the spectral interpretation of
the SPDE and the construction of solutions using basis functions, and the
selection of different basis functions will be discussed.

Assignment: Compute precision matrix elements for an irregularly
spaced SPDE approximation on the real line, compare results to an AR(1)
process. (i.e. solve the SPDE in 1D)


http://arxiv.org/pdf/1001.2058.pdf

Key references

[1] Lindgren, Rue & Lindstrém (2011) ”An explicit link between Gaussian
fields and Gaussian Markov random fields: the stochastic partial differ-
ential equation approach” JRSSB

[2] Lindgren & Rue (2008) ”On the Second-Order Random Walk Model for
Irregular Locations” Scand. J. Stat.

[3] Whittle (1963) ”Stochastic processes in several dimensions” Bull. Int.
Stat. Ins.

[4] Rue (2001) ”Fast sampling from Gaussian Markov random fields” JRSSB

Inference for Gaussian Markov Random Fields

Lecturer: Johan Lindstrom.

The inference for GMRF-based models (and other latent field models)
is often based on MCMC computations. This lecture will cover the general
framework of Hierarchical Bayesian modelling, i.e. partially observed latent
process with unknown parameters governing process and observations. The
inference for these models will be discussed highlighting: 1) The advantage
of blocking MCMC updates, 2) Construction of Laplace approximations to
the posterior, 3) using Laplace approximations to construct MCMC propos-
als and 4) replacing the MCMC step with numerical integration, resulting
in INLA. If time allows other methods for estimating latent fields, mainly
expected maximisation (possibly something about SA-EM) and expected
conjugate gradient algorithms van be discussed.

Assignment: Assuming a latent AR(1) process with non-Gaussian ob-
servations implement a Laplace-approximation based parameter estimation
(i.e. the optimisation part of INLA), possibly consider MCMC algorithms
based on the approximation.

Key references

[1] Wikle, Berliner & Cressie (1998) ”Hierarchical Bayesian space-time mod-
els” Environ. Ecol. Stat,

[2] Knorr-Held & Rue (2002) ”On Block Updating in Markov Random Field
Models for Disease Mapping” Scand. J. Stat.

[3] Rue, Martino & Chopin (2009) ”Approximate Bayesian inference for
hierarchical Gaussian Markov random field models” JRSSB



[4] Givens & Hoeting (2013) ”Chapter 4: EM Optimization Methods” in
Computational Statistics 2nd Ed.

[5] Lange (1995) ”A gradient algorithm locally equivalent to the EM algo-
rithm” JRSSB



