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Abstract. We analyze the convergence rate of the Dirichlet-Neumaration for the fully
discretized one dimensional unsteady transmission pneb&pecifically, we consider the cou-
pling of two linear heat equations on two identical non oapping intervals. The Laplacian is
discretized using finite differences on one interval anddialements on the other and the im-
plicit Euler method is used for the time discretization.l&waling previous analysis where finite
elements where used on both subdomains, we provide an exantl& for the spectral radius
of the iteration matrix for this specific mixed discretireis. We then show that these tend to
the ratio of heat conductivities in the semidiscrete spéitiat, but to a factor of the ratio of the
products of density and specific heat capacity in the seprgtis temporal one. In the previous
finite element analysis, the same result was obtained indghediscrete spatial limit but the
factor in the temporal limit was lower. This explains thetfegnvergence previously observed
for cases with strong jumps in the material coefficients. Blueal results confirm the analysis.
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1 INTRODUCTION

Thermal fluid structure interaction occurs when a heat floxnfra fluid leads to temperature
changes in a structure or vice versa. Examples for this akngpof gas-turbine blades, cool-
ing of rocket thrust chambers [11,]12], thermal anti-iciggtems of airplanes [4], supersonic
reentry of vehicles from space [10,/14] or gas quenching9g, 1

Unsteady thermal fluid structure interaction is modelleédgiswo partial differential equations
describing a fluid and a structure on different domains. Thmgons are coupled at an interface
to model the heat transfer between fluid and structure. Tdrelard algorithm to find solutions
of the coupled problem is the Dirichlet-Neumann iteratisere the PDEs are solved sepa-
rately using Dirichlet-, respectively Neumann boundarpditbions with data given from the
solution of the other problem. The convergence rate of thihotehas been analyzed in any
standard book on domain decomposition method, ¢.d.[[18, Pigre, the iteration matrix is
derived in terms of the spatial discretization matrices @i@convergence rate is the spectral
radius of that. However, this does not provide a quantiednswer, since the spectral radius is
unknown.

We consider the transmission problem because it is a bastrigublock in fluid structure in-
teraction. For this case, a one dimensional stability aslyas presented by Giles [7]. There,
an explicit time integration method was chosen with respethe interface unknowns. Hen-
shaw and Chand provided in/[9] a method to analyze stabihty @nvergence speed of the
Dirichlet-Neumann iteration in 2D based on applying thetoarous Fourier transform to the
semi-discretized equations. Their result depends onsrafithermal conductivities and diffu-
sivities of the materials. This is similar to the situation[i, /5] where the performance of the
coupling for incompressible fluids is affected by the addebsreffect. However, in the fully
discrete case we observe that the iteration converges rnastdr for some choices of materials
[3], and that the speed of the iteration does not depend oth#renal diffusivities in some
cases. IN[16] the discrete case was analyzed for finite eiedigcretizations. In this paper, we
present a similar one dimensional analysis in the case affgpmixed discretizations.

Thus, we consider a complete discretization of the couptedlpm using finite differences on
one domain and finite elements on the other (in space) andanbkcit Euler method in time.
Then, we compute the spectral radius of the iteration matxactly in terms of the eigende-
composition of the resulting matrices for the one dimemsi@ase. The asymptotics of the
convergence rates when approaching the continuous caglen time or space are also com-
puted resulting in the ratio of the thermal conductivitiespace and a factor of the ratio of the
heat capacities in time. These results are consistent withumerical experiments.

An outline of the paper now follows. In Section 2, we define ghagblem to be solved in terms
of the partial differential equations, boundary condis@md interface conditions. We also give
a description of the discretization. In Section 3, we expthe Dirichlet-Neumann model. Our
analysis for the discrete case of the model problem usinglidat-Neumann interface condi-
tions for mixed discretizations is presented in Sectionm Séction 5, we present numerical
results that show the theoretical stability analysis.

2 MODEL PROBLEM

The unsteady transmission problem is as follows, where wsider a domaif2 c R which is
cut into two subdomaing = 2, U2, with transmission conditions at the interfdce- 2, Ny:
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Dt (X, 1)

9 + AnAuy, (X, ) = f(x), t € [to,tf], X€Qy C RY m=1,2,

um(X,y) =0, t € [to,tf] X € O, \T,

ur (X y) = u2(X,y), XL, (1)
MOzur (X, y) - N = A0pus(X,y) -n, X €T,
U (X, 0) = 1 (X), X € Q.

QAm

wheren denotes the normal vector and we considler 1, 2.

The constants\; and \, describe the thermal conductivities of the materialstgnand €2,
respectively.«,, = p..C,, Wherep,, respresents the density aay, the heat capacity of the
material placed if,,, m = 1,2. D; and D, represent the thermal diffusivities of the materials
and they are defined by

D, = )\—m (2)
am
We consider a constant mesh widthAdf = 1/(N + 1) with NV being the number of interior
space discretization points in both and(2,. Moreover, we discretize this problem using a
finite difference method (FDM) of?; and a finite element method (FEM) éB. The implicit
Euler method is used for the time discretization.

2.1 Space Discretization

First of all, we focus on the FDM formulation &, of problem (1). For this, Iem(fl) correspond
to the unknowns of2; andur correspond to the unknows at the interface=rom now on we
assume thaf; = 0 in order to simplify the analysis.

Then, applying second order central differences

Auy (1) ur(Tiv1, ) — 2ui (23, ) + wr (w1, 1)), for i=1,.., N, 3)

vl

to approximate the second order spatial derivative of (A)fo= 1, we can write the resulting
discrete system as:

ozlll(ll) + Alu(ll) + A(Ilr)UF =0. (4)

A, corresponds to the discretization of the Laplacian opeti6?, and the required data from
the interface is inserted in the equation by the ma&n‘;}%

On the other hand, we also need to discretize the problef®,arsing FEM formulation. For
this, we choose an approximatioh of u, in a finite-dimensional subspa&e’ of H' having
the form

Ua(X, 1) = > ¢;(t)9;(z). (5)



Azahar Monge and Philipp Birken

where NV is the number of interior spatial discretization points @ c,; are the coefficient
functions andp, the test functions. Then, the Galerkin finite element pnobie to determine
U, € SV such that

oU,

[6%) —<Z>JdV + )\2 /

o AUy;dV = / fagidV t € [to, ], (6)
(92 Q2 Q2

/ UggbjdV :/ UQOQde‘/, t = O7 j — 1727.__7]\]' —1.
Qo

Qo

As before, Ie'u?) correspond to the unknowns 63 and assume thgt = 0 in order to simplify
the analysis. Then, applying Green’s formula to (6) in otderemove the Laplacian operator
and lettingj run over the interior nodes dm,, we can write the resulting discrete system as:

Mo + MPup + Au? + Aup = 0. (7)
A, andM, are the stiffness and the mass matrix for the interior nodés,@nd they are defined
as

(Ag)ij — )\2/ V(Z)ngbjdv, ’l,j - 1,2, ,N — 1,
Qo

(Mg)ij = (9 gbigbjdV, Z,j == 1,2, ,N — 1.

Q2

The required data from the interface is inserted in the égusiby the matriceA(fF) andM (IQF)
However, the system (4)-(7) is not enough to describe (1jeriting the approach (4)-(7) for
the unsteady transmission problem, we will look for an agpnation of the normal derivatives
onl'. For this, we consider the interface discretization paojnio be discretized with FDM with
respect to the first equation in (1) for = 1 and with FEM with respect to the first equation in
(1) form = 2.

On one hand, we use centered finite differences to discretizer both first and second order
derivatives because this choice forces second order agcatdhe interface point[13, pp. 31].
For this, we need to introduce another unknawf,, t) to get

8U1 )\1
AM—x ——
! 8n1 2ALIZ‘(

ul(xNvt) _UQ(x17t))a
A\ (8)
oqUp + @(ul(x]v, t) — 2ur + us(xq,t)) = 0.

Removingu, (1, t) from (8) we get for the following approximation for the norhdarivative:

HEDM = M{2ur + A ur + Al ul. (9)

On the other hand, given the local exact solutignits normal derivative can be written as a
linear functional by using Green’s formula ]20]. Thus,

4
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8u2

A2
6”2

Q2
:/ (—a 8“2@ + \aVus - Vb,)dV.
Q2

And now, lettingj run over the nodes ol we obtain the following expressions for the normal
derivative:

LEEM = M(IEU[‘ + M%Q}Ug ) + A(Q)U + A%QI)U?). (11)

Consequently, the equation

HFDM + HFEM = 0 (12)

completes the system (4)-(7).

Now, we reformulate the coupled equations (4), (7) and (&) an ODE for the vector of

unknownsu = (ul”, u?, up)?

MU+ Au =0 (13)
where
aill 0 0 A, 0 Al
M=| 0 M, M2 A= o0 A, AP
0 M M mE AL AR A AR

2.2 TimeDiscretization

Applying the implicit Euler method with time stefyt to the system (13), we get for the vector
of unknownsum+! = (ul gt eyt

Au™tt =y (14)
whereu” = (a,u{", Mou®™ + MPur, MP U™ 4+ Mprun)? and
ayl — AtA, 0 ~AtAlY
A=M—AtA = 0 My — AtA, MY — AtAR |,

—AtAY) MP — AAY M — AtALr

with Mpr = M}llz + M andApp = A}llz +A )
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3 FIXED POINT ITERATION

We now employ a standard Dirichlet-Neumann iteration teedtihe discrete system (14). This
corresponds to alternatively solving the discretized &quoa of the transmission problem (1)
on €2; with Dirichlet data onl’ and the discretization of (1) o}, with Neumann data oifr.
Due to the Dirichlet boundary condition, we can compute thlateon of (1) on€; explicitly.
However, a system of two equations is needed to find the soloi(2, andI" simultaneously
due to the Neumann boundary condition.

Applying this to (14), one gets for thieth iteration the two equation systems

(gl — AtAUM TR — ApA Dyt Lk (0, (15)

AQFTt = (16)

Y

to be solved in succession. Here,

. |\/|2 - AtA2 M2 AtAI? e y{Dm At
A= (2 u = n+1,k+1
ME — AtA? MBP_ Al u”
and

N M u(f) +M(2)uF
AAD UL (M) ApAD) A L M @GE e
with some initial condition, here].*"* = uz. The iteration is terminated according to the

standard criterioffutt — uk|| < 7 wherer is a user defined tolerance [2].
We now rewrite (15)-(16) as an iteration fof*!. To this end, we isolate the teray" " "**!
from (15) andu'® " ***! from the first equation in (16):

UL (01— AAL) T AAR U 4+ aguDT, (7)

U — My — AEAG) T (=M = AARH U L MouP T e MPur). (18)

Inserting (17) and (18) into the second equation of (16) dstains the iteratiom]. "' =

SulttF 44, with iteration matrix

N = _s» g (19)

where

SO = M = AtAL) — A2AD (ol — AtA) AR, (20)
S® = (M) — AtAR) — (M) — AtAZ))(Ma — AtA,) I (MY — AtAR),  (21)

ands are other terms non dependentuii '*.
Thus, the Dirichlet-Neumann iteration is a linear iterateind the rate of convergence is de-
scribed by the spectral radius of the iteration matrix.

6
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4 ANALYSIS

In this section, we study the iteration matdxfor an specific FDM-FEM discretizations. We
will give an exact formula which computes the convergentestaThe behavior of the rates
when approaching both the continuous case in time and spaedsa given.

Specifically, we considep, = [0, 1], 2, = [1, 2] and the standard piecewise-linear polynomials

T—Tp—1 H
ot if v <z <uay
x —T H
br(z) = 1::171,%, if 2, <z <app (22)
0, otherwise

as test functions of?,. .
If we considere; = (0 --- 0 1 0 --- 0) € RY where the only nonzero entry is

located at thg-th position, the discretization matrices are given by

-2 1 0 4 1 0
Am 1 -2 () 4 -
Am A—I‘Q . ) M2 - F )
1 1
0 1 -2 0 1 4
1 aq 2 2000 m Am
M§‘12277 M%‘[z—?a Ai‘p) __—sz, m 1,2
A A o
1 1 2 2 2 2
Agl‘) = A2 N Agl‘) Ag2 b MgI‘) F )
A A o
1 1 2 2 2 2

whereAz = 1/(N + 1) andA,,, My € RN A M) ¢ V<1 and A ME) ¢ RNV
form=1,2.

Note that the iteration matriX is just a real number in this case and thus its spectral raslius
its modulus. The goal now is to compusg’ andS®?. Inserting the corresponding matrices
specified in (19) we have

s = (G g AN G (01— ALA) e
=2 T AAE) T AT Rty (el AR e

_ (M A —AtQA—% ! )
S\ 2 Ax? Agd NN
s _ (92 ap % a2\ grm, — Aty
=3 TAaz) G T Aaz) aMam Atk e
(24)

= %—l—Ati — %—Ati i 2
3 A2 6 Ag2 ) A
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whereq; represent the entries of the matfix;| — AtA;)~" anda;; the entries of the matrix
(M,, —AtA,,) "t fori,j = 1,..., N. Observe that the matricés;| — AtA;) and(M, — AtA,)
are tridiagonal Toeplitz matrices but their inverses atematrices. The computation of the
exact inverses is based on a recursive formula which runstbgeentries|[6] and consequently,
it is not trivial how to finda}, y anda?, this way.

Due to these difficulties, we propose to rewrite the matrices — AtA;)~! and (M,, —
AtA,,)~ ! in terms of their eigendecomposition:

. At a;Az? + 2\ A At\]7!
(aul — AtA)™! = [tnduag (-2;, il xA; M t,—AAletH — VATV,  (25)

B . A2 — 6AAL 200AZ2 + 6XaAL apAz? — 6AAL\ T B
(M. - AtA)™ = {md'ag( A7 3A7 AT )} = VA V.26)

where the matriX¥ has the eigenvectors of any symmetric tridiagonal matria @&®lumns
and the matriced\,, A, are a diagonal matrices having the eigenvalues6f— AtA; and
M, — AtA, as entries. These are known and given e.d. in [15, pp. 514#-516

1 . N ) o
Vij = . - sm( fori,j=1,...,N,
Yosin () \N+1
A= L a1 Az? + 20\ At — 2\ At cos L
N N +1 ’ (27)
1 gm
2 2 2

)\j = m (Q(IQAZL‘ + 6)\2At + (OZQAI‘ — 6)\2At) Ccos (m))

for j=1,...,.N m=1,2.

The entriesy},y anda?, of the matricega; | — AtA;)~! and(M, — AtA,) ™!, respectively, are
now computed through their eigendecomposition resulting i

N Ry
1 > int % sin’ (NJ]er) 1 08
aNN - N 2 T = N . 92/ 9 ( )
> sin® (25) S, sin®(imrAx)
N : in
, i e sin® (§) S ”
oy = N . 2/ in =SSN o , (29)
> iy sin® (§255) S, sin®(imrAx)
with
N Az2 sin2(in A
o — Z x*sin”(irAx) (30)
1 — oy Az? + 20\ At(1 — cos(imAz))’
N
3Az? sin’(irAx
SS9 = Z ( i ) (31)

202 A2 + 6 AL + (A2 — 6XAt) cos(imAx)

i=1
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Now, inserting (28) and (29) into (23) and (24) we get$0? andS?,

S(l) . OélAl‘Q + 2)\1At _ )\%AtQ S1 (32)
2A1? Art SN sin?(inAz)’
8(2) _ OéQAI‘Q + 3)\2At . (OQAZEQ - 6)\2At)2 - ‘82 . . (33)
3Az? 36Az* Sl sin®(irAx)

With this we obtain an explicit formula for the spectral nasliof the iteration matrix. as a
function of Az and At:

p(2) = |2 =128V

_ (agAxQ +3MAL (apAx? — 6o AL)? S1 )1
3Ax? 36Ax? SOV sin?(imAx) (34)
a1 Az? + 20 AL NAL2 So
' < 2Ax? N SV sinQ(mAx)> '

To simplify this, the finite sunEfil sin?(irAz) can be computed. We first rewrite the sum of
squared sinus into a sum of cosinus using the idesiity(z/2) = (1 — cos(x))/2. Then, the
resulting sum can be converted into a geometric sum usingrBdbrmula:

Y 1-Ar 1
2 N :
jEl sin“(jrAzx) = Az 3 jEl cos(2jmAx)

1-Az 1 M
_ . ijT Az
oAr 2h¢ (;e )

(35)
1 — A 2itAz (1 _ o2iNwAz
= L lRe ‘ ( 'e )
2Ar 2 1 — g2inAz
_ 2Azcos*(mAz) —2Az +1

B 2Ax

Inserting (35) into (34) we get after some manipulations
5] = 9AZ(y Az? + 2\ At) (2Ax cos?(mAx) — 2Ax + 1) — 36AI A s, (36)

3Az (205 A2 + 6 AL) (2Ax cos?(mAx) — 2Ax + 1) — (apAx? — 6AAL) %5y

This is a computable formula that gives exactly the convergeates of the Dirichlet-Neumann
iteration for givenAx, At, a,,, and\,,,, m =1, 2.

We are now interested in the asymptotics of (36). In paricue want to know the behaviour
of (36) whenAt or Az tend to 0. However, the denominators of (30) and (31) becane z
whenAx tends to 0. To solve this problem, we reformulate (36) in ®afr = At/Axz?. To
get that, we multiply (36) byt /Az? both in the numerator and denominator getting

9
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9Az (g + 2M1¢) (2A7 cos?(mAx) — 2Az + 1) — 36AxAic?s,
3(2ag + 6X90) (2Az cos?(mAx) — 2Az + 1) — Az (g — 6Xo¢)2 5,

Z| = (37)

where

al sin? (it Az)

/ J—
L ; ay 4 2A1¢(1 — cos(imAx))’

(38)

Z 3sin®(irAx) (39)

209 + 6o + (g — 6Xoc) cos(imAx)

form =1,2.
Computing the limits of (37) whea— 0 andc — oo we get

lim 5] = 9 (2Ax cos?(mrAz) — 2Az + 1) 2

c=0 6oy (2A7 cos?(mAz) — 28z + 1) — Aza2 SN, %
31 (2Ax cos?(mAx) — 2Az + 1) N

Qg (2(2A3: cos?(tAz) — 28z 4+ 1) — Az SOV Mﬂm)» o

1=1 2+4cos(irAx

(40)

18\ 1¢(2Az cos? (7 Az) — 2Az + 1) — 36(Ac)2 S sin? (inAAx)

Y 13 = fim 7 ; PN el

20(2Az cos?(mAz) — 2Ax + 1) = 36(X2¢)? 3231 et —cos(inAn)
B A1 ((QA:E cos?(mAz) —2Azx+ 1)+ Az — 1 — Ax Z . COS(MA:E)) N 5
B Ao ((QA:c cos?(mrAx) —2Ax + 1) + Az — 1 — Ax Zi:l COS(’iWA:C)) Y

(41)

The result obtained in (41) matches with[16] and strong jsimghe thermal conductivities of
the materials placed if1; and(2, will imply fast convergence. This is the case when modelling
thermal fluid structure interaction, where usually a coragitde fluid with low thermal conduc-
tivity and density is coupled with a structure having higliermal conductivity and density.
However, the result in (40) does not only depend on the rdtig,9 m = 1, 2. It also depends
on Az, and therefore, in the case of mixed discretizations martefa affect the rates. We will
compare (40) with the results obtained(in![16] in more dstailthe next section.

5 NUMERICAL RESULTS

In this section we present a set of numerical experimenigied to show how (36) computes
the convergence rates. We also show that the theoreticalpstics deduced both in (40) and
(41) match with the numerical experiments.

Figure 1 shows the cases 1 and 2 specified in table 1. Thesaoteespond tp(Y), the crosses

to the experimental convergence rates and the dashed lthe tmrresponding asymptotig (
whenAt — 0 andd whenAx — 0). Notice that the method does not converge for some cases.
Nevertheles§X| describes the convergence rate grahdd their asymptotics.

10
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(Case | Dy [Do[ M [ ] 6 [ v [reEm| 174 7EEM]

1 10303 103|026 0.15 0.16
2 |03/ 1]03|1(03|104| 0.6 1.04
3 1/05/03|103]0.16] 0.09 0.16
4 |05/ 1|03 103|173 1 1.74

Table 1: The first four columns contain the input parametersife different one dimensional test casesandd
are the resulting limits when approaching the continuose @atime and space of the discrete estimatpg\ is
the semidiscrete limit in time specified in |16] and the lagimin corresponds to the relation betwegii), and

Y-

-0.801

oM 0.24f 1
-0.802 x  Conv. Rate|{ . § g T TT T oTTos
oy ® g
®Q
-0.803 1 0.22)
-0.804
g 2 o2f
-0.805
-0.806 0.18f
& o |z
-0.807 ofifefof@@@,,,,,,,,,,,: x  Conv. Rate
x x o 0.16f |---vy
-0.808
-6 -5.5 -5 -45 -4 -6 -5.5 -5 -45 -4
log(at) log(at)
(a) Case 1. (b) Case 2.

Figure 1: Cases 1 and 2 from table 1. The circles correspot¥| t¢the crosses to the experimental convergence
rates and the dashed linetoThe curves are restricted to the discrete valNes= 1e —4/50,2-1e—4/50, ..., 50-
le—4/50 andAz = 1/20. One observes howdescribes the behaviour of the convergence rates when wecenf
the conditionAt/Az? << 1.

Even though a 2D analysis has not been done, one can expeatgimailar analysis will hold
due to the results shown in figure 2. To illustrate this, figishows the experimental conver-
gence rates for cases 1 and 2 in 2D. One observes that themrabes2D case have a similar
behavior than in the 1D case (figure 1).

-0.816 T T T 0.24 T T T

-0.818 1 022l §
X x % N
-0.82 o
0.2 o
£ -0.822 8
0.181
-0.824
o
><><><>< L
-0.826 B Wox X XX 0.16
-0.828 . - .
-6 -55 -5 -4.5 -4 -6 -5.5 -5 -4.5 -4
log(At) log(At)
(a) Case 1. (b) Case 2.

Figure 2: The experimental convergence rates in 2D for chsesl 2 in table 1. The curves are restricted to the
discrete valuea\t = 1e — 4/50,2 - 1e — 4/50, ...,50 - 1e — 4/50 andAxz = 1/20. A similar behaviour to the 1D
case is observed here.

Now we want to test if the convergence rates when approathagontinuous case in space
have dependency on the thermal diffusivities and D, as predicted in_[9] or they do not as

11
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in our analysis. For that, figure 3 shows the cases 1 and 2 fatue tL. Here, the thermal
conductivities\; and A\, are the same in both plots but the thermal diffusivities aviched
(meaning thatD, in case 1 corresponds 10, in case 2 and), in case 1 corresponds 10,

in case 2). We can observe that the asymptotics of the coemweegrates do not vary in both
plots. This result is consistent with [17] where a similah&&our was observed for the 2D
version of the coupled unsteady transmission problem eliged with finite differences and
also with [16] where a 1D and 2D convergence analysis for tistaady transmission problem
discretized with finite elements was performed. Finallyserve that the convergence rate does
not vary a lot when we decreager. For a fairly large choice oAz (for instanceAz = 1/10),

the convergence rates are already quite cloge to

?9-® 9 @ -4

®-® ® - -4

o Iz o I
-1t x Conv. Rate |{ -1+ x  Conv. Rate |{
R ---3

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -16 -1.4 -1.2 -1 -0.8 -0.6
log(ax) log(ax)

(a) Case 1. (b) Case 2.

Figure 3: Cases 1 and 2 from table 1. The curves are restticthe discrete valuedz = 1/3,1/4,...,1/30and
At = 100. One observes howdescribes the behaviour of the convergence rates when wecerthe condition
At/Az? >> 1.

Before ending this section, we want to present a compariebmden the semidiscrete limit in
time presented in this paper)(and the one computed in [16] when both subdom&ipsnd
(2, are discretized with finite elementg{g),) which was defined as

€51

TFEM = - (42)

Figure 4 and 5 show the comparison betweeandygg)\, for the cases 3 and 4 specified in
table 1. One can observe that> yggp. and therefore, the method will be slower using
mixed discretizations (FDM - FEM) than using pure FEM disizagion when approaching the

continuous case in time. More in general, from the numeagperiments is possible to observe
that

100 8]

R == 43
TR, T o JFEM (43)

with constants:; = 9 andc, = 5.18. This phenomena can also been checked in table 1 where
this approximation has been included in the last column.

6 CONCLUSIONSAND FURTHER WORK

We have described the Dirichlet-Neumann iteration for thgpting of two heat equations on
two identical domains. In particular, the coupled PDE weeemrtized into a system of alge-
braic equations using finite differences Qn and finite elements of,. Afterwards, a fixed

12
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-0.57

-0.575

-0.58

o Iz
x  Conv. Rate
Y

-0.7

-0.75

S
x  Conv. Rate
Ty

-0.585

-0.59

-0.595
-0.85

-0.6

-0.605 -
6 0

5.5 -5 -4.5 —4 Z6 -55 -5 -45 -4
log(at) log(t)

(a) Mixed discretizations (b) FEM discretization

Figure 4. Case 3 from table 1. Comparison betwedteft) andygg\ (right). The curves are restricted to the
discrete valued\t = le — 4/50,2 - le — 4/50,...,50 - 1e — 4/50 andAz = 1/20. Observe tha > g0 and
in particular,y ~ 1.74vrgMm-
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Figure 5: Case 4 from table 1. Comparison betwedleft) andyggp, (right). The curves are restricted to the
discrete values\t = le — 4/50,2- le — 4/50, ...,50 - 1e — 4/50 andAz = 1/20. Observe thay > ygg)\ and
in particular,y ~ 1.74vrFgMm-

point iteration was performed and the iteration matrix wasd. An exact formula describing
the convergence rates is derived. Finally, the limits ofdbevergence rates when approaching
the continuous case either in spade£ \;/);) or time (y) are computed. In the numerical
results, we have presented four different test cases whimlv kow the computed asymptotics
predict the behaviour of the convergence rates and a cosgpawith the results of the pure
finite element discretization of the problemin[16].

From the first four test cases we conclude that does not strongly affect the convergence
rates. However, they are affected ly. Moreover, our results show that when approaching
the continuous case in spac&a — 0) the convergence rates do not depend on the thermal
diffusivities D, and D, as predicted in_[9] for the semidiscrete case. We found tlad¢yais in

[9] to be correct and are not sure where the discrepancy ctres this is subject of further
investigation.

From the comparison betweenandygg), We can observe that > ygg)\ and more specifi-
cally,y ~ 9o, /5.18; = 1.74 - ygg\- This explains why the convergence of the method when
approaching the continuous case in time is slower when ubmgixed discretizations FDM -
FEM with respect to the pure FEM discretization.

There are a variety of future directions for this work. A 2Cabysis of this mixed discretization
can be done. Another goal would be to analyze the convergate®of the method using finite
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volumes on one domain and finite elements on the other. ThiErsinteresting in the context
of fluid structure interaction where the fluid is usually detzed using finite volumes and the
structure with finite elements. Another future directiorl Wwe to study the convergence speed
of an actual non linear application.
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