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Abstract. We analyze the convergence rate of the Dirichlet-Neumann iteration for the fully
discretized one dimensional unsteady transmission problem. Specifically, we consider the cou-
pling of two linear heat equations on two identical non overlapping intervals. The Laplacian is
discretized using finite differences on one interval and finite elements on the other and the im-
plicit Euler method is used for the time discretization. Following previous analysis where finite
elements where used on both subdomains, we provide an exact formula for the spectral radius
of the iteration matrix for this specific mixed discretizations. We then show that these tend to
the ratio of heat conductivities in the semidiscrete spatial limit, but to a factor of the ratio of the
products of density and specific heat capacity in the semidiscrete temporal one. In the previous
finite element analysis, the same result was obtained in the semidiscrete spatial limit but the
factor in the temporal limit was lower. This explains the fast convergence previously observed
for cases with strong jumps in the material coefficients. Numerical results confirm the analysis.
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1 INTRODUCTION

Thermal fluid structure interaction occurs when a heat flux from a fluid leads to temperature
changes in a structure or vice versa. Examples for this are cooling of gas-turbine blades, cool-
ing of rocket thrust chambers [11, 12], thermal anti-icing systems of airplanes [4], supersonic
reentry of vehicles from space [10, 14] or gas quenching [8, 19].
Unsteady thermal fluid structure interaction is modelled using two partial differential equations
describing a fluid and a structure on different domains. The equations are coupled at an interface
to model the heat transfer between fluid and structure. The standard algorithm to find solutions
of the coupled problem is the Dirichlet-Neumann iteration,where the PDEs are solved sepa-
rately using Dirichlet-, respectively Neumann boundary conditions with data given from the
solution of the other problem. The convergence rate of the method has been analyzed in any
standard book on domain decomposition method, e.g. [18, 20]. There, the iteration matrix is
derived in terms of the spatial discretization matrices andthe convergence rate is the spectral
radius of that. However, this does not provide a quantitative answer, since the spectral radius is
unknown.
We consider the transmission problem because it is a basic building block in fluid structure in-
teraction. For this case, a one dimensional stability analysis was presented by Giles [7]. There,
an explicit time integration method was chosen with respectto the interface unknowns. Hen-
shaw and Chand provided in [9] a method to analyze stability and convergence speed of the
Dirichlet-Neumann iteration in 2D based on applying the continuous Fourier transform to the
semi-discretized equations. Their result depends on ratios of thermal conductivities and diffu-
sivities of the materials. This is similar to the situation in [1, 5] where the performance of the
coupling for incompressible fluids is affected by the added mass effect. However, in the fully
discrete case we observe that the iteration converges much faster for some choices of materials
[3], and that the speed of the iteration does not depend on thethermal diffusivities in some
cases. In [16] the discrete case was analyzed for finite element discretizations. In this paper, we
present a similar one dimensional analysis in the case of specific mixed discretizations.
Thus, we consider a complete discretization of the coupled problem using finite differences on
one domain and finite elements on the other (in space) and the implicit Euler method in time.
Then, we compute the spectral radius of the iteration matrixexactly in terms of the eigende-
composition of the resulting matrices for the one dimensional case. The asymptotics of the
convergence rates when approaching the continuous case in either time or space are also com-
puted resulting in the ratio of the thermal conductivities in space and a factor of the ratio of the
heat capacities in time. These results are consistent with our numerical experiments.
An outline of the paper now follows. In Section 2, we define theproblem to be solved in terms
of the partial differential equations, boundary conditions and interface conditions. We also give
a description of the discretization. In Section 3, we explain the Dirichlet-Neumann model. Our
analysis for the discrete case of the model problem using Dirichlet-Neumann interface condi-
tions for mixed discretizations is presented in Section 4. In Section 5, we present numerical
results that show the theoretical stability analysis.

2 MODEL PROBLEM

The unsteady transmission problem is as follows, where we consider a domainΩ ⊂ R
d which is

cut into two subdomainsΩ = Ω1∪Ω2 with transmission conditions at the interfaceΓ = Ω1∩Ω2:
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αm

∂um(x, t)
∂t

+ λm∆um(x, t) = f(x), t ∈ [t0, tf ], x ∈ Ωm ⊂ R
d, m = 1, 2,

um(x, y) = 0, t ∈ [t0, tf ] x ∈ ∂Ωm\Γ,

u1(x, y) = u2(x, y), x ∈ Γ, (1)

λ1∂xu1(x, y) · n = λ2∂xu2(x, y) · n, x ∈ Γ,

um(x, 0) = u0m(x), x ∈ Ωm.

wheren denotes the normal vector and we considerd = 1, 2.
The constantsλ1 andλ2 describe the thermal conductivities of the materials onΩ1 andΩ2

respectively.αm = ρmCm whereρm respresents the density andCm the heat capacity of the
material placed inΩm,m = 1, 2. D1 andD2 represent the thermal diffusivities of the materials
and they are defined by

Dm =
λm
αm

. (2)

We consider a constant mesh width of∆x = 1/(N + 1) with N being the number of interior
space discretization points in bothΩ1 andΩ2. Moreover, we discretize this problem using a
finite difference method (FDM) onΩ1 and a finite element method (FEM) onΩ2. The implicit
Euler method is used for the time discretization.

2.1 Space Discretization

First of all, we focus on the FDM formulation onΩ1 of problem (1). For this, letu(1)
I correspond

to the unknowns onΩ1 anduΓ correspond to the unknows at the interfaceΓ. From now on we
assume thatf1 = 0 in order to simplify the analysis.
Then, applying second order central differences

∆u1(xi, t) ≈
1

∆x2
(u1(xi+1, t)− 2u1(xi, t) + u1(xi−1, t)), for i = 1, .., N, (3)

to approximate the second order spatial derivative of (1) for m = 1, we can write the resulting
discrete system as:

α1u̇(1)
I + A1u

(1)
I + A(1)

IΓuΓ = 0. (4)

A1 corresponds to the discretization of the Laplacian operator onΩ1 and the required data from
the interface is inserted in the equation by the matrixA(1)

IΓ .
On the other hand, we also need to discretize the problem onΩ2 using FEM formulation. For
this, we choose an approximationU2 of u2 in a finite-dimensional subspaceSN of H1 having
the form

U2(x, t) =
N−1
∑

j=1

cj(t)φj(x). (5)
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whereN is the number of interior spatial discretization points onΩ2, cj are the coefficient
functions andφj the test functions. Then, the Galerkin finite element problem is to determine
U2 ∈ SN such that

α2

∫

Ω2

∂U2

∂t
φjdV + λ2

∫

Ω2

∆U2φjdV =

∫

Ω2

f2φjdV t ∈ [t0, tf ], (6)
∫

Ω2

U2φjdV =

∫

Ω2

U0
2φjdV, t = 0, j = 1, 2, ..., N − 1.

As before, letu(2)
I correspond to the unknowns onΩ2 and assume thatf2 = 0 in order to simplify

the analysis. Then, applying Green’s formula to (6) in orderto remove the Laplacian operator
and lettingj run over the interior nodes onΩ2, we can write the resulting discrete system as:

M2u̇(2)
I + M(2)

IΓ u̇Γ + A2u
(2)
I + A(2)

IΓuΓ = 0. (7)

A2 andM2 are the stiffness and the mass matrix for the interior nodes onΩ2 and they are defined
as

(A2)ij = λ2

∫

Ω2

∇φi∇φjdV, i, j = 1, 2, ..., N − 1,

(M2)ij = α2

∫

Ω2

φiφjdV, i, j = 1, 2, ..., N − 1.

The required data from the interface is inserted in the equations by the matricesA(2)
IΓ andM(2)

IΓ .
However, the system (4)-(7) is not enough to describe (1). Extending the approach (4)-(7) for
the unsteady transmission problem, we will look for an approximation of the normal derivatives
onΓ. For this, we consider the interface discretization pointuΓ to be discretized with FDM with
respect to the first equation in (1) form = 1 and with FEM with respect to the first equation in
(1) form = 2.
On one hand, we use centered finite differences to discretizeuΓ for both first and second order
derivatives because this choice forces second order accuracy at the interface point [13, pp. 31].
For this, we need to introduce another unknownu2(x1, t) to get

λ1
∂u1
∂n1

≈
λ1
2∆x

(u1(xN , t)− u2(x1, t)),

α1u̇Γ +
λ1
∆x2

(u1(xN , t)− 2uΓ + u2(x1, t)) = 0.

(8)

Removingu2(x1, t) from (8) we get for the following approximation for the normal derivative:

µFDM = M(1)
ΓΓu̇Γ + A(1)

ΓΓuΓ + A(1)
ΓI u(1)

I . (9)

On the other hand, given the local exact solutionu2, its normal derivative can be written as a
linear functional by using Green’s formula [20]. Thus,
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λ2

∫

Γ

∂u2
∂n2

φjdS = λ2

∫

Ω2

(∆u2φj +∇u2 · ∇φj)dV (10)

=

∫

Ω2

(−α2
∂u2
∂t

φj + λ2∇u2 · ∇φj)dV.

And now, lettingj run over the nodes onΓ we obtain the following expressions for the normal
derivative:

µFEM = M(2)
ΓΓu̇Γ + M(2)

ΓI u̇(2)
I + A(2)

ΓΓuΓ + A(2)
ΓI u(2)

I . (11)

Consequently, the equation

µFDM + µFEM = 0 (12)

completes the system (4)-(7).
Now, we reformulate the coupled equations (4), (7) and (12) into an ODE for the vector of
unknownsu = (u(1)

I , u(2)
I , uΓ)

T

M̃u̇ + Ãu = 0 (13)

where

M̃ =





α1I 0 0
0 M2 M(2)

IΓ

0 M(2)
ΓI M(1)

ΓΓ + M(2)
ΓΓ



 , Ã =







A1 0 A(1)
IΓ

0 A2 A(2)
IΓ

A(1)
ΓI A(2)

ΓI A(1)
ΓΓ + A(2)

ΓΓ






.

2.2 Time Discretization

Applying the implicit Euler method with time step∆t to the system (13), we get for the vector
of unknownsun+1 = (u(1),n+1

I , u(2),n+1
I , un+1

Γ )T

Aun+1 = un (14)

whereun = (α1u
(1),n
I , M2u(2),n

I + M(2)
IΓun

Γ, M(2)
ΓI u(2),n

I + MΓΓun
Γ)

T and

A = M̃ −∆tÃ =







α1I −∆tA1 0 −∆tA(1)
IΓ

0 M2 −∆tA2 M(2)
IΓ −∆tA(2)

IΓ

−∆tA(1)
ΓI M(2)

ΓI −∆tA(2)
ΓI MΓΓ −∆tAΓΓ






,

with MΓΓ = M(1)
ΓΓ + M(2)

ΓΓ andAΓΓ = A(1)
ΓΓ + A(2)

ΓΓ.
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3 FIXED POINT ITERATION

We now employ a standard Dirichlet-Neumann iteration to solve the discrete system (14). This
corresponds to alternatively solving the discretized equations of the transmission problem (1)
on Ω1 with Dirichlet data onΓ and the discretization of (1) onΩ2 with Neumann data onΓ.
Due to the Dirichlet boundary condition, we can compute the solution of (1) onΩ1 explicitly.
However, a system of two equations is needed to find the solution onΩ2 andΓ simultaneously
due to the Neumann boundary condition.
Applying this to (14), one gets for thek-th iteration the two equation systems

(α1I −∆tA1)u
(1),n+1,k+1
I = ∆tA(1)

IΓun+1,k
Γ + α1u

(1),n
I , (15)

Âûk+1 = ûk, (16)

to be solved in succession. Here,

Â =

(

M2 −∆tA2 M(2)
IΓ −∆tA(2)

IΓ

M(2)
ΓI −∆tA(2)

ΓI M(2)
ΓΓ −∆tA(2)

ΓΓ

)

, ûk+1 =

(

u(2),n+1,k+1
I

un+1,k+1
Γ

)

and

ûk =

(

M2u
(2),n
I + M(2)

IΓ un
Γ

∆tA(1)
ΓI u(1),n+1,k+1

I − (M(1)
ΓΓ −∆tA(1)

ΓΓ)u
n+1,k
Γ + M(2)

ΓI u(2),n
I + MΓΓun

Γ

)

with some initial condition, hereun+1,0
Γ = un

Γ. The iteration is terminated according to the
standard criterion‖uk+1

Γ − uk
Γ‖ ≤ τ whereτ is a user defined tolerance [2].

We now rewrite (15)-(16) as an iteration forun+1
Γ . To this end, we isolate the termu(1),n+1,k+1

I

from (15) andu(2),n+1,k+1
I from the first equation in (16):

u(1),n+1,k+1
I = (α1I −∆tA1)

−1(∆tA(1)
IΓun+1,k

Γ + α1u(1),n
I ), (17)

u(2),n+1,k+1
I = (M2 −∆tA2)

−1(−(M(2)
IΓ −∆tA(2)

IΓ )u
n+1,k+1
Γ + M2u

(2),n
I + M(2)

IΓ un
Γ). (18)

Inserting (17) and (18) into the second equation of (16) one obtains the iterationun+1,k+1
Γ =

Σun+1,k
Γ + ψ, with iteration matrix

Σ = −S(2)−1
S(1), (19)

where

S(1) = (M(1)
ΓΓ −∆tA(1)

ΓΓ)−∆t2A(1)
ΓI (α1I −∆tA1)

−1A(1)
IΓ , (20)

S(2) = (M(2)
ΓΓ −∆tA(2)

ΓΓ)− (M(2)
ΓI −∆tA(2)

ΓI )(M2 −∆tA2)
−1(M(2)

IΓ −∆tA(2)
IΓ ), (21)

andψ are other terms non dependent onun+1,k
Γ .

Thus, the Dirichlet-Neumann iteration is a linear iteration and the rate of convergence is de-
scribed by the spectral radius of the iteration matrix.
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4 ANALYSIS

In this section, we study the iteration matrixΣ for an specific FDM-FEM discretizations. We
will give an exact formula which computes the convergence rates. The behavior of the rates
when approaching both the continuous case in time and space are also given.
Specifically, we considerΩ1 = [0, 1],Ω2 = [1, 2] and the standard piecewise-linear polynomials

φk(x) :=











x−xk−1

xk−xk−1
, if xk−1 < x ≤ xk

xk+1−x

xk+1−xk

, if xk < x ≤ xk+1

0, otherwise











(22)

as test functions onΩ2.
If we considerej =

(

0 · · · 0 1 0 · · · 0
)T

∈ R
N where the only nonzero entry is

located at thej-th position, the discretization matrices are given by

Am =
λm
∆x2











−2 1 0

1 −2
. . .

. . . . . . 1
0 1 −2











, M2 =
α2

6











4 1 0

1 4
. . .

. . . . . . 1
0 1 4











,

M(1)
ΓΓ =

α1

2
, M(2)

ΓΓ =
2α2

6
, A(m)

ΓΓ = −
λm
∆x2

, m = 1, 2.

A(1)
IΓ =

λ1
∆x2

eN , A(2)
IΓ =

λ2
∆x2

e1, M(2)
IΓ =

α2

6
e1,

A(1)
ΓI =

λ1
∆x2

eTN , A(2)
ΓI =

λ2
∆x2

eT1 , M(2)
ΓI =

α2

6
eT1 .

where∆x = 1/(N + 1) andAm, M2 ∈ R
N×N , A(m)

IΓ , M(2)
IΓ ∈ R

N×1 andA(m)
ΓI , M(2)

ΓI ∈ R
1×N

for m = 1, 2.
Note that the iteration matrixΣ is just a real number in this case and thus its spectral radiusis
its modulus. The goal now is to computeS(1) andS(2). Inserting the corresponding matrices
specified in (19) we have

S(1) =

(

α1

2
+ ∆t

λ1
∆x2

)

−∆t2
λ21
∆x4

eTN (α1I −∆tA1)
−1eN

=

(

α1

2
+ ∆t

λ1
∆x2

)

−∆t2
λ21
∆x4

α1
NN ,

(23)

S(2) =

(

α2

3
+ ∆t

λ2
∆x2

)

−

(

α2

6
−∆t

λ2
∆x2

)2

eT1 (M2 −∆tA2)
−1e1

=

(

α2

3
+ ∆t

λ2
∆x2

)

−

(

α2

6
−∆t

λ2
∆x2

)2

α2
11,

(24)
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whereα1
ij represent the entries of the matrix(α1I − ∆tA1)

−1 andα2
ij the entries of the matrix

(Mm−∆tAm)
−1 for i, j = 1, ..., N . Observe that the matrices(α1I−∆tA1) and(M2−∆tA2)

are tridiagonal Toeplitz matrices but their inverses are full matrices. The computation of the
exact inverses is based on a recursive formula which runs over the entries [6] and consequently,
it is not trivial how to findα1

NN andα2
11 this way.

Due to these difficulties, we propose to rewrite the matrices(α1I − ∆tA1)
−1 and (Mm −

∆tAm)
−1 in terms of their eigendecomposition:

(α1I −∆tA1)
−1 =

[

tridiag

(

−
λ1∆t

∆x2
,
α1∆x

2 + 2λ1∆t

∆x2
,−

λ1∆t

∆x2

)]

−1

= VΛ−1
1 V, (25)

(M2 −∆tA2)
−1 =

[

tridiag

(

α2∆x
2 − 6λ2∆t

6∆x2
,
2α2∆x

2 + 6λ2∆t

3∆x2
,
α2∆x

2 − 6λ2∆t

6∆x2

)]

−1

= VΛ−1
2 V,(26)

where the matrixV has the eigenvectors of any symmetric tridiagonal matrix asa columns
and the matricesΛ1, Λ2 are a diagonal matrices having the eigenvalues ofα1I − ∆tA1 and
M2 −∆tA2 as entries. These are known and given e.g. in [15, pp. 514-516]

vij =
1

∑N

k=1 sin
2
(

kπ
N+1

) sin

(

ijπ

N + 1

)

for i, j = 1, ..., N,

λ1j =
1

∆x2

(

α1∆x
2 + 2λ1∆t− 2λ1∆t cos

(

jπ

N + 1

))

,

λ2j =
1

3∆x2

(

2α2∆x
2 + 6λ2∆t + (α2∆x

2 − 6λ2∆t) cos

(

jπ

N + 1

))

for j = 1, ..., N m = 1, 2.

(27)

The entriesα1
NN andα2

11 of the matrices(α1I−∆tA1)
−1 and(M2−∆tA2)

−1, respectively, are
now computed through their eigendecomposition resulting in

α1
NN =

∑N

i=1
1
λ1
i

sin2
(

iπN
N+1

)

∑N

i=1 sin
2
(

iπ
N+1

) =
s1

∑N

i=1 sin
2(iπ∆x)

, (28)

α2
11 =

∑N

i=1
1
λ2
i

sin2
(

iπ
N+1

)

∑N

i=1 sin
2
(

iπ
N+1

) =
s2

∑N

i=1 sin
2(iπ∆x)

, (29)

with

s1 =
N
∑

i=1

∆x2 sin2(iπ∆x)

α1∆x2 + 2λ1∆t(1− cos(iπ∆x))
, (30)

s2 =

N
∑

i=1

3∆x2 sin2(iπ∆x)

2α2∆x2 + 6λ2∆t+ (α2∆x2 − 6λ2∆t) cos(iπ∆x)
. (31)

8
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Now, inserting (28) and (29) into (23) and (24) we get forS(1) andS(2),

S(1) =
α1∆x

2 + 2λ1∆t

2∆x2
−
λ21∆t

2

∆x4
s1

∑N

i=1 sin
2(iπ∆x)

, (32)

S(2) =
α2∆x

2 + 3λ2∆t

3∆x2
−

(α2∆x
2 − 6λ2∆t)

2

36∆x4
s2

∑N

i=1 sin
2(iπ∆x)

. (33)

With this we obtain an explicit formula for the spectral radius of the iteration matrixΣ as a
function of∆x and∆t:

ρ(Σ) = |Σ| = |S(2)−1
S(1)|

=

(

α2∆x
2 + 3λ2∆t

3∆x2
−

(α2∆x
2 − 6λ2∆t)

2

36∆x4
s1

∑N

i=1 sin
2(iπ∆x)

)

−1

·

(

α1∆x
2 + 2λ1∆t

2∆x2
−
λ21∆t

2

∆x4
s2

∑N

i=1 sin
2(iπ∆x)

)

.

(34)

To simplify this, the finite sum
∑N

i=1 sin
2(iπ∆x) can be computed. We first rewrite the sum of

squared sinus into a sum of cosinus using the identitysin2(x/2) = (1 − cos(x))/2. Then, the
resulting sum can be converted into a geometric sum using Euler’s formula:

N
∑

j=1

sin2(jπ∆x) =
1−∆x

2∆x
−

1

2

N
∑

j=1

cos(2jπ∆x)

=
1−∆x

2∆x
−

1

2
Re

(

N
∑

j=1

e2ijπ∆x

)

=
1−∆x

2∆x
−

1

2
Re

(

e2iπ∆x
(

1− e2iNπ∆x
)

1− e2iπ∆x

)

=
2∆x cos2(π∆x)− 2∆x+ 1

2∆x

(35)

Inserting (35) into (34) we get after some manipulations

|Σ| =
9∆x(α1∆x

2 + 2λ1∆t)(2∆x cos
2(π∆x)− 2∆x+ 1)− 36λ21∆t

2s1
3∆x(2α2∆x2 + 6λ2∆t)(2∆x cos2(π∆x)− 2∆x+ 1)− (α2∆x2 − 6λ2∆t)2s2

. (36)

This is a computable formula that gives exactly the convergence rates of the Dirichlet-Neumann
iteration for given∆x, ∆t, αm andλm,m = 1, 2.
We are now interested in the asymptotics of (36). In particular, we want to know the behaviour
of (36) when∆t or ∆x tend to 0. However, the denominators of (30) and (31) become zero
when∆x tends to 0. To solve this problem, we reformulate (36) in terms of c = ∆t/∆x2. To
get that, we multiply (36) by1/∆x2 both in the numerator and denominator getting
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|Σ| =
9∆x(α1 + 2λ1c)(2∆x cos

2(π∆x)− 2∆x+ 1)− 36∆xλ21c
2s′1

3(2α2 + 6λ2c)(2∆x cos2(π∆x)− 2∆x+ 1)−∆x(α2 − 6λ2c)2s
′

2

(37)

where

s′1 =

N
∑

i=1

sin2(iπ∆x)

α1 + 2λ1c(1− cos(iπ∆x))
, (38)

s′2 =
N
∑

i=1

3 sin2(iπ∆x)

2α2 + 6λ2c+ (α2 − 6λ2c) cos(iπ∆x)
. (39)

for m = 1, 2.
Computing the limits of (37) whenc→ 0 andc→ ∞ we get

lim
c→0

|Σ| =
9α1(2∆x cos

2(π∆x)− 2∆x+ 1)

6α2(2∆x cos2(π∆x)− 2∆x+ 1)−∆xα2
2

∑N

i=1
3 sin2(iπ∆x)

α2(2+cos(iπ∆x))

=
3α1(2∆x cos

2(π∆x)− 2∆x+ 1)

α2

(

2(2∆x cos2(π∆x)− 2∆x+ 1)−∆x
∑N

i=1
sin2(iπ∆x)
2+cos(iπ∆x)

) =: γ,

(40)

lim
c→∞

|Σ| = lim
c→∞

18λ1c(2∆x cos
2(π∆x)− 2∆x+ 1)− 36(λ1c)

2
∑N

i=1
sin2(iπ∆x)

2λ1c(1−cos(iπ∆x))

18λ2c(2∆x cos2(π∆x)− 2∆x+ 1)− 36(λ2c)2
∑N

i=1
3 sin2(iπ∆x)

6λ2c(1−cos(iπ∆x))

=
λ1

(

(2∆x cos2(π∆x)− 2∆x+ 1) + ∆x− 1−∆x
∑N

i=1 cos(iπ∆x)
)

λ2

(

(2∆x cos2(π∆x)− 2∆x+ 1) + ∆x− 1−∆x
∑N

i=1 cos(iπ∆x)
) =

λ1
λ2

=: δ.

(41)

The result obtained in (41) matches with [16] and strong jumps in the thermal conductivities of
the materials placed inΩ1 andΩ2 will imply fast convergence. This is the case when modelling
thermal fluid structure interaction, where usually a compressible fluid with low thermal conduc-
tivity and density is coupled with a structure having higherthermal conductivity and density.
However, the result in (40) does not only depend on the ratio of αm, m = 1, 2. It also depends
on∆x, and therefore, in the case of mixed discretizations more factors affect the rates. We will
compare (40) with the results obtained in [16] in more details in the next section.

5 NUMERICAL RESULTS

In this section we present a set of numerical experiments designed to show how (36) computes
the convergence rates. We also show that the theoretical asymptotics deduced both in (40) and
(41) match with the numerical experiments.
Figure 1 shows the cases 1 and 2 specified in table 1. The circles correspond toρ(Σ), the crosses
to the experimental convergence rates and the dashed line tothe corresponding asymptotic (γ
when∆t→ 0 andδ when∆x→ 0). Notice that the method does not converge for some cases.
Nevertheless|Σ| describes the convergence rate andγ andδ their asymptotics.

10
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Case D1 D2 λ1 λ2 δ γ γFEM 1.74 · γFEM
1 1 0.3 0.3 1 0.3 0.26 0.15 0.16
2 0.3 1 0.3 1 0.3 1.04 0.6 1.04
3 1 0.5 0.3 1 0.3 0.16 0.09 0.16
4 0.5 1 0.3 1 0.3 1.73 1 1.74

Table 1: The first four columns contain the input parameters for the different one dimensional test cases.γ andδ
are the resulting limits when approaching the continuous case in time and space of the discrete estimator.γFEM is
the semidiscrete limit in time specified in [16] and the last column corresponds to the relation betweenγFEM and
γ.
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(a) Case 1.
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log(∆t)

lo
g

 

 

|Σ|
Conv. Rate
γ

(b) Case 2.

Figure 1: Cases 1 and 2 from table 1. The circles correspond to|Σ|, the crosses to the experimental convergence
rates and the dashed line toγ. The curves are restricted to the discrete values∆t = 1e−4/50, 2 ·1e−4/50, ..., 50 ·
1e−4/50 and∆x = 1/20. One observes howγ describes the behaviour of the convergence rates when we enforce
the condition∆t/∆x2 << 1.

Even though a 2D analysis has not been done, one can expect that a similar analysis will hold
due to the results shown in figure 2. To illustrate this, figure2 shows the experimental conver-
gence rates for cases 1 and 2 in 2D. One observes that the ratesin the 2D case have a similar
behavior than in the 1D case (figure 1).
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(a) Case 1.
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Figure 2: The experimental convergence rates in 2D for cases1 and 2 in table 1. The curves are restricted to the
discrete values∆t = 1e− 4/50, 2 · 1e− 4/50, ..., 50 · 1e− 4/50 and∆x = 1/20. A similar behaviour to the 1D
case is observed here.

Now we want to test if the convergence rates when approachingthe continuous case in space
have dependency on the thermal diffusivitiesD1 andD2 as predicted in [9] or they do not as
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in our analysis. For that, figure 3 shows the cases 1 and 2 from table 1. Here, the thermal
conductivitiesλ1 andλ2 are the same in both plots but the thermal diffusivities are switched
(meaning thatD1 in case 1 corresponds toD2 in case 2 andD2 in case 1 corresponds toD1

in case 2). We can observe that the asymptotics of the convergence rates do not vary in both
plots. This result is consistent with [17] where a similar behaviour was observed for the 2D
version of the coupled unsteady transmission problem discretized with finite differences and
also with [16] where a 1D and 2D convergence analysis for the unsteady transmission problem
discretized with finite elements was performed. Finally, observe that the convergence rate does
not vary a lot when we decrease∆x. For a fairly large choice of∆x (for instance∆x = 1/10),
the convergence rates are already quite close toδ.

−1.6 −1.4 −1.2 −1 −0.8 −0.6
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

log(∆x)

lo
g

 

 

|Σ|
Conv. Rate
δ
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Figure 3: Cases 1 and 2 from table 1. The curves are restrictedto the discrete values∆x = 1/3, 1/4, ..., 1/30 and
∆t = 100. One observes howδ describes the behaviour of the convergence rates when we enforce the condition
∆t/∆x2 >> 1.

Before ending this section, we want to present a comparison between the semidiscrete limit in
time presented in this paper (γ) and the one computed in [16] when both subdomainsΩ1 and
Ω2 are discretized with finite elements (γFEM) which was defined as

γFEM :=
α1

α2
. (42)

Figure 4 and 5 show the comparison betweenγ andγFEM for the cases 3 and 4 specified in
table 1. One can observe thatγ > γFEM, and therefore, the method will be slower using
mixed discretizations (FDM - FEM) than using pure FEM discretization when approaching the
continuous case in time. More in general, from the numericalexperiments is possible to observe
that

γ ≈
c1α1

c2α2

=
c1
c2
γFEM (43)

with constantsc1 = 9 andc2 = 5.18. This phenomena can also been checked in table 1 where
this approximation has been included in the last column.

6 CONCLUSIONS AND FURTHER WORK

We have described the Dirichlet-Neumann iteration for the coupling of two heat equations on
two identical domains. In particular, the coupled PDE were discretized into a system of alge-
braic equations using finite differences onΩ1 and finite elements onΩ2. Afterwards, a fixed
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Figure 4: Case 3 from table 1. Comparison betweenγ (left) andγFEM (right). The curves are restricted to the
discrete values∆t = 1e − 4/50, 2 · 1e− 4/50, ..., 50 · 1e− 4/50 and∆x = 1/20. Observe thatγ > γFEM and
in particular,γ ≈ 1.74γFEM.
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(a) Mixed discretizations
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Figure 5: Case 4 from table 1. Comparison betweenγ (left) andγFEM (right). The curves are restricted to the
discrete values∆t = 1e − 4/50, 2 · 1e− 4/50, ..., 50 · 1e− 4/50 and∆x = 1/20. Observe thatγ > γFEM and
in particular,γ ≈ 1.74γFEM.

point iteration was performed and the iteration matrix was found. An exact formula describing
the convergence rates is derived. Finally, the limits of theconvergence rates when approaching
the continuous case either in space (δ := λ1/λ2) or time (γ) are computed. In the numerical
results, we have presented four different test cases which show how the computed asymptotics
predict the behaviour of the convergence rates and a comparison with the results of the pure
finite element discretization of the problem in [16].
From the first four test cases we conclude that∆x does not strongly affect the convergence
rates. However, they are affected by∆t. Moreover, our results show that when approaching
the continuous case in space (∆x → 0) the convergence rates do not depend on the thermal
diffusivitiesD1 andD2 as predicted in [9] for the semidiscrete case. We found the analysis in
[9] to be correct and are not sure where the discrepancy comesfrom, this is subject of further
investigation.
From the comparison betweenγ andγFEM we can observe thatγ > γFEM and more specifi-
cally,γ ≈ 9α1/5.18α2 = 1.74 · γFEM. This explains why the convergence of the method when
approaching the continuous case in time is slower when usingthe mixed discretizations FDM -
FEM with respect to the pure FEM discretization.
There are a variety of future directions for this work. A 2D analysis of this mixed discretization
can be done. Another goal would be to analyze the convergencerates of the method using finite
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volumes on one domain and finite elements on the other. This isvery interesting in the context
of fluid structure interaction where the fluid is usually discretized using finite volumes and the
structure with finite elements. Another future direction will be to study the convergence speed
of an actual non linear application.
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