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Outside view

R.A. Fisher (1890–1962)



Outside view

• Data have distributions
• Parameters do not
• Distinguish parameters and 

statistics
• Likelihood not a probability 

distribution
• Imaginary population
• Bayes is sampling theory + priors
• Priors are uniquely subjective



Lineage of complaints

Dennis Lindley (1923–2013)



Conceptual friction
• Common barriers:

• Thinking data must look like 
likelihood function

• Degrees of freedom
• “Sampling” as source of all 

uncertainty
• Defining random effects via 

sampling design
• Neglect of data uncertainty
• add your own



My Book is Neo-Colonial

• I feel bad about choices made
• Uses outsider perspective

• “Likelihood”
• “parameter”
• “estimate”

• Like explaining Indian politics 
using British political parties

• Perpetuates confusion
• Historical necessity?



Another path

• Claim: Bayes easier and more 
powerful when understood from 
the inside

• Problem: Many insider views
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CHAPTER 3 

46656 Varieties 
of  Bayesians (#765) 

. . 
Some attacks and defenses o f  the ~ a ~ e s i a n ' ~ o s i t i o n  assume that i t  is  unique so i t  
should be helpful to point out that there are at least 46656 different interpreta- 
tions. This i s  shown by the following classification based on eleven facets. The 
count would be larger i f  I had not artificially made some of the facets discrete and 
my heading would have been "On the Infinite Variety o f  Bayesians." 

Al l  Bayesians, as I understand the term, believe that i t  i s  usually meaningful to 
talk about the probability of a hypothesis and they make some attempt to be con- 
sistent in their judgments. Thus von Mises (1942) would not count as a Bayesian, 
on this definition. For he considered that Bayes's theorem is  applicable only when 
the prior i s  itself a physical probability distribution based on a large sample from 
a superpopulation. I f  he i s  counted as a Bayesian, then there are at least 46657 
varieties, which happens to rhyme with the number o f  Heinz varieties. But no 
doubt both numbers will increase on a recount. 

Here are the eleven facets: 
1 . Type //rationality. (a) Consciously recognized;'(b) not. Here Type I I ration- 

ality i s  defined as the recommendation to maximize expected uti l i ty allowing for 
the cost of theorizing (#290). I t  involves the recognition that judgments can be 
revised, leading at best to consistency o f  mature judgments. 

2. Kinds of judgments. (a) Restricted to a specific class or classes, such as 
preferences between actions; (b) all kinds permitted, such as o f  probabilities and 
utilities, and any functions o f  them such asexpected utilities, weights of evidence, 
likelihoods, and surprise indices (#82; Good, 1954). This facet could of course 
be broken up into a large number. 

3. Precision of judgments. (a) Sharp; (b) based on inequalities, i.e. partially 
ordered, but sharp judgments often assumed for the sake o f  simplicity (in accor- 
c i a n r ~  with 1 Fa1 \ 

4. Extremeness. (a) Formal Bayesian procedure recommended for all applica- 
tions; (b) non-Bayesian methods used provided that some set of axioms o f  intui- 
tive probability are not seen to be contradicted (the Bayeslnon-Bayes compromise: 
Hegel and Marx would call i t  a synthesis); (c) non-Bayesian methods used only 
after they have been given a rough Bayesian justification. 

5. Utilities. (a) Brought in from the start; (b) avoided, as by H. Jeffreys; 
(c) utilities introduced separately from intuitive probabilities. 

6. Quasiutilities. (a) Only one kind o f  ut i l i ty recognized; (b) explicit recog- 
nition that "quasiutilities" (#%90A, 755) are worth using, such as amounts o f  
information or "weights of evidence" (Peirce, 1978 [but  see #I3821 ; #13); (c) 
using quasiutilities without noticing that they are substitutes for utilities. The 
use of quasiutilities is  as old as the words "information" and "evidence," bu t  I 
think the name "quasiutility" serves a useful purpose in focussing the issue. 

7. Physical probabilities. (a) Assumed to exist; (b) denied; (c) used as i f  they 
exist but without philosophical commitment (#617). 

8. Intuitive probability. (a) Subjective probabilities regarded as primary; (b) 
credibilities (logical probabilities) primary; (c) regarding i t  as mentally healthy to 
think of subjective probabilities as estimates o f  credibilities, without being sure 
that credibilities really exist; (d) credibilities in principle definable by an inter- 
national body. . . . 

9. Device of imaginary results. (a) Explicit use; (b) not. The device involves 
imaginary experimental results used for judging final or posterior probabilities 
from which are inferred discernments about the initial probabilities. For examples 
see ##13, 547. 

10. Axioms. (a) As simple as possible; (b) incorporating Kolmogorov's axiom 
(complete additivity); (c) using Kolmogorov's axiom when mathematically con- 
venient but regarding i t  as barely relevant to the philosophy of  applied statistics. 

11. Probability "types. " (a) Considering that priors can have parameters with 
"Type I II" distributions, as a convenient technique for making judgments; (b) 
not. Here (a) leads, by a compromise with non-Bayesian statistics, to such tech- 
niques as Type I I  maximum likelihood and Type I I  likelihood-ratio tests (#547). 

Thus there are at least 24 36 . 4 = 46656 categories. This i s  more than the 
number of professional statisticians so some of the categories must be empty. 
Thomas Bayes hardly wrote enough to be properly categorized; a partial attempt 
i s  b--aaa?-b--. My own category i s  abcbcbccaca. What's yours? 
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Insider perspective

• Bayesian approach: A joint 
generative model of all variables

• Key ideas:
• Unity among variables: No 

deep distinction between data 
and parameters

• Unity among distributions: No 
deep distinction between 
likelihoods and priors



y ⇠ Normal(✓,�)

Likelihood or Prior?

b T S



y ⇠ Normal(✓,�)

Likelihood or Prior?

b T S

If  b is observed, likelihood.

If  b is unobserved, prior.



Corner cases

• In conventional GLMs, no problem distinguishing data 
from parameters.

• But what about:
• GLMMs
• Missing data
• Measurement error
• Many strange machines



notes

cat

rate of singing when cat present

rate of singing when cat absent



notes
cat

rate of singing when cat present
rate of singing when cat absent

Observed variables Unobserved variables



Joint model

Prob(notes, cat, rate|cat, rate|no-cat)



Joint model

Prob(notes, cat, rate|cat, rate|no-cat)

∼ (λ )

λ = ( − )α+ β

α ∼ (.)

β ∼ (.)

∼ (λ )

λ = ( − )α+ β

α ∼ ( / )

β ∼ ( / )



How is prior formed?

• What pre-data information do we have about unobserved 
variables?
• Rates are non-zero positive real values. Model expected 

value ==maxent==> Exponential
• This most conservative distribution consistent w info

• Like priors, likelihoods are pre-data distributions.
• Use pre-data information (meta-data) to build them.
• Notes are zero or positive integers. Model expected value 

==maxent==> Poisson
• Again, most conservative distribution consistent w info



How is prior formed?

• What pre-data information do we have about unobserved 
variables?
• Rates are non-zero positive real values. Model expected 

value ==maxent==> Exponential
• This most conservative distribution consistent w info

• Like priors, likelihoods are pre-data distributions.
• Use pre-data information (meta-data) to build them.
• Notes are zero or positive integers. Model expected value 

==maxent==> Poisson
• Again, most conservative distribution consistent w info



∼ (λ )

λ = ( − )α+ β

α ∼ (.)

β ∼ (.)

∼ (λ )

λ = ( − )α+ β

α ∼ ( / )

β ∼ ( / )

data{
    int<lower=1> N;
    int notes[N];
    int cat[N];
}
parameters{
    real<lower=0> alpha;
    real<lower=0> beta;
}
model{
    vector[N] lambda;
    beta ~ exponential( 0.1 );
    alpha ~ exponential( 0.1 );
    for ( i in 1:N ) {
        lambda[i] = (1 - cat[i]) * alpha + cat[i] * beta;
    }
    notes ~ poisson( lambda );
}

Stan code

notes ~ poisson(lambda),
lambda <- (1-cat)*alpha + cat*beta,
alpha ~ exponential(0.1),
beta ~ exponential(0.1)

map2stan code

https://gist.github.com/rmcelreath

https://gist.github.com/rmcelreath
https://gist.github.com/rmcelreath


GLMM birds

• Multiple birds, each with own rates:

∼ (λ )

λ = ( − )α+ β

α ∼ (.)

β ∼ (.)

∼ (λ )

λ = ( − )α+ β

α ∼ ( / )

β ∼ ( / )

∼ (λ )

λ = ( − )α + β

α ∼ ( /ᾱ)

β ∼ ( /β̄)

ᾱ ∼ ( / )

β̄ ∼ ( / )

∼ (λ )

λ = ( − )α+ β

, ∼ ( × . )

∼ ( . )

α ∼ ( / )

β ∼ ( / )

∼ (λ )

λ = ( − )α+ β

∼ (κ)

κ ∼ ( , )

α ∼ ( / )

β ∼ ( / )
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6. Fixed and random effects. A persistent point of conflict in the ANOVA
literature is the appropriate use of fixed or random effects, an issue which we
must address since we advocate treating all batches of effects as sets of random
variables. Eisenhart (1947) distinguishes between fixed and random effects in
estimating variance components, and this approach is standard in current textbooks
[e.g., Kirk (1995)]. However, there has been a stream of dissenters over the years;
for example, Yates (1967):

. . . whether the factor levels are a random selection from some defined set (as might be
the case with, say, varieties), or are deliberately chosen by the experimenter, does not
affect the logical basis of the formal analysis of variance or the derivation of variance
components.

Before discussing the technical issues, we briefly review what is meant by fixed
and random effects. It turns out that different—in fact, incompatible—definitions
are used in different contexts. [See also Kreft and de Leeuw (1998), Section 1.3.3,
for a discussion of the multiplicity of definitions of fixed and random effects and
coefficients, and Robinson (1998) for a historical overview.] Here we outline five
definitions that we have seen:

1. Fixed effects are constant across individuals, and random effects vary. For
example, in a growth study, a model with random intercepts αi and fixed
slope β corresponds to parallel lines for different individuals i, or the model
yit = αi + βt . Kreft and de Leeuw [(1998), page 12] thus distinguish between
fixed and random coefficients.

2. Effects are fixed if they are interesting in themselves or random if there is
interest in the underlying population. Searle, Casella and McCulloch [(1992),
Section 1.4] explore this distinction in depth.

3. “When a sample exhausts the population, the corresponding variable is fixed;
when the sample is a small (i.e., negligible) part of the population the
corresponding variable is random” [Green and Tukey (1960)].

4. “If an effect is assumed to be a realized value of a random variable, it is called
a random effect” [LaMotte (1983)].

5. Fixed effects are estimated using least squares (or, more generally, maximum
likelihood) and random effects are estimated with shrinkage [“linear unbiased
prediction” in the terminology of Robinson (1991)]. This definition is standard
in the multilevel modeling literature [see, e.g., Snijders and Bosker (1999),
Section 4.2] and in econometrics.
In the Bayesian framework, this definition implies that fixed effects β

(m)
j

are estimated conditional on σm = ∞ and random effects β
(m)
j are estimated

conditional on σm from the posterior distribution.

Of these definitions, the first clearly stands apart, but the other four definitions
differ also. Under the second definition, an effect can change from fixed to
random with a change in the goals of inference, even if the data and design
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DISCUSSION PAPER
ANALYSIS OF VARIANCE—WHY IT IS MORE IMPORTANT

THAN EVER1

BY ANDREW GELMAN

Columbia University

Analysis of variance (ANOVA) is an extremely important method
in exploratory and confirmatory data analysis. Unfortunately, in complex
problems (e.g., split-plot designs), it is not always easy to set up an
appropriate ANOVA. We propose a hierarchical analysis that automatically
gives the correct ANOVA comparisons even in complex scenarios. The
inferences for all means and variances are performed under a model with
a separate batch of effects for each row of the ANOVA table.
We connect to classical ANOVA by working with finite-sample variance

components: fixed and random effects models are characterized by inferences
about existing levels of a factor and new levels, respectively. We also
introduce a new graphical display showing inferences about the standard
deviations of each batch of effects.
We illustrate with two examples from our applied data analysis, first

illustrating the usefulness of our hierarchical computations and displays, and
second showing how the ideas of ANOVA are helpful in understanding a
previously fit hierarchical model.

1. Is ANOVA obsolete? What is the analysis of variance? Econometricians
see it as an uninteresting special case of linear regression. Bayesians see it
as an inflexible classical method. Theoretical statisticians have supplied many
mathematical definitions [see, e.g., Speed (1987)]. Instructors see it as one of
the hardest topics in classical statistics to teach, especially in its more elaborate
forms such as split-plot analysis. We believe, however, that the ideas of ANOVA
are useful in many applications of statistics. For the purpose of this paper, we
identify ANOVA with the structuring of parameters into batches—that is, with
variance components models. There are more general mathematical formulations
of the analysis of variance, but this is the aspect that we believe is most relevant in
applied statistics, especially for regression modeling.
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for example, Yates (1967):

. . . whether the factor levels are a random selection from some defined set (as might be
the case with, say, varieties), or are deliberately chosen by the experimenter, does not
affect the logical basis of the formal analysis of variance or the derivation of variance
components.

Before discussing the technical issues, we briefly review what is meant by fixed
and random effects. It turns out that different—in fact, incompatible—definitions
are used in different contexts. [See also Kreft and de Leeuw (1998), Section 1.3.3,
for a discussion of the multiplicity of definitions of fixed and random effects and
coefficients, and Robinson (1998) for a historical overview.] Here we outline five
definitions that we have seen:

1. Fixed effects are constant across individuals, and random effects vary. For
example, in a growth study, a model with random intercepts αi and fixed
slope β corresponds to parallel lines for different individuals i, or the model
yit = αi + βt . Kreft and de Leeuw [(1998), page 12] thus distinguish between
fixed and random coefficients.

2. Effects are fixed if they are interesting in themselves or random if there is
interest in the underlying population. Searle, Casella and McCulloch [(1992),
Section 1.4] explore this distinction in depth.

3. “When a sample exhausts the population, the corresponding variable is fixed;
when the sample is a small (i.e., negligible) part of the population the
corresponding variable is random” [Green and Tukey (1960)].

4. “If an effect is assumed to be a realized value of a random variable, it is called
a random effect” [LaMotte (1983)].

5. Fixed effects are estimated using least squares (or, more generally, maximum
likelihood) and random effects are estimated with shrinkage [“linear unbiased
prediction” in the terminology of Robinson (1991)]. This definition is standard
in the multilevel modeling literature [see, e.g., Snijders and Bosker (1999),
Section 4.2] and in econometrics.
In the Bayesian framework, this definition implies that fixed effects β

(m)
j

are estimated conditional on σm = ∞ and random effects β
(m)
j are estimated

conditional on σm from the posterior distribution.

Of these definitions, the first clearly stands apart, but the other four definitions
differ also. Under the second definition, an effect can change from fixed to
random with a change in the goals of inference, even if the data and design
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Analysis of variance (ANOVA) is an extremely important method
in exploratory and confirmatory data analysis. Unfortunately, in complex
problems (e.g., split-plot designs), it is not always easy to set up an
appropriate ANOVA. We propose a hierarchical analysis that automatically
gives the correct ANOVA comparisons even in complex scenarios. The
inferences for all means and variances are performed under a model with
a separate batch of effects for each row of the ANOVA table.
We connect to classical ANOVA by working with finite-sample variance

components: fixed and random effects models are characterized by inferences
about existing levels of a factor and new levels, respectively. We also
introduce a new graphical display showing inferences about the standard
deviations of each batch of effects.
We illustrate with two examples from our applied data analysis, first

illustrating the usefulness of our hierarchical computations and displays, and
second showing how the ideas of ANOVA are helpful in understanding a
previously fit hierarchical model.

1. Is ANOVA obsolete? What is the analysis of variance? Econometricians
see it as an uninteresting special case of linear regression. Bayesians see it
as an inflexible classical method. Theoretical statisticians have supplied many
mathematical definitions [see, e.g., Speed (1987)]. Instructors see it as one of
the hardest topics in classical statistics to teach, especially in its more elaborate
forms such as split-plot analysis. We believe, however, that the ideas of ANOVA
are useful in many applications of statistics. For the purpose of this paper, we
identify ANOVA with the structuring of parameters into batches—that is, with
variance components models. There are more general mathematical formulations
of the analysis of variance, but this is the aspect that we believe is most relevant in
applied statistics, especially for regression modeling.
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GLMM birds

• Shrinkage happens everywhere
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Efron’s example of “shrinkage estimator”



Galton’s “regression to mean”



data{
    int<lower=1> N;
    int<lower=1> N_id;
    int notes[N];
    int cat[N];
    int id[N];
}
parameters{
    vector<lower=0>[N_id] alpha;
    vector<lower=0>[N_id] beta;
    real<lower=0> alpha_bar;
    real<lower=0> beta_bar;
}
model{
    vector[N] lambda;
    beta_bar ~ exponential( 0.1 );
    alpha_bar ~ exponential( 0.1 );
    beta ~ exponential( 1.0/beta_bar );
    alpha ~ exponential( 1.0/alpha_bar );
    for ( i in 1:N ) {
        lambda[i] = (1 - cat[i]) * alpha[id[i]] 

   + cat[i] * beta[id[i]];
    }
    notes ~ poisson( lambda );
}

Stan code

notes ~ poisson(lambda),
lambda <- (1-cat)*alpha[id] + cat*beta[id],
alpha[id] ~ exponential(1.0/alpha_bar),
beta[id] ~ exponential(1.0/beta_bar),
alpha_bar ~ exponential(0.1),
beta_bar ~ exponential(0.1)

map2stan code
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Bad data, good cats

• Jointly model cat behavior:
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Bad data, good cats
• Useful when some data go missing: some cat_t observations 

unavailable—cats stepped on the keyboard.
• Same distribution does double duty:
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parameters{
    real<lower=0,upper=1> kappa;
    real<lower=0> beta;
    real<lower=0> alpha;
}
model{
    beta ~ exponential( 0.1 );
    alpha ~ exponential( 0.1 );
    kappa ~ beta( 4 , 4 );
    for ( i in 1:N ) {
        if ( cat[i]==-1 ) { // cat missing
            target += log_mix( kappa ,
                    poisson_lpmf( notes[i] | beta ),
                    poisson_lpmf( notes[i] | alpha )
                );
        } else { // cat not missing
            cat[i] ~ bernoulli(kappa);
            notes[i] ~ poisson( (1-cat[i])*alpha + 
cat[i]*beta );
        } 
    }//i
}

Stan code

notes ~ poisson(lambda),
lambda <- (1-cat)*alpha + cat*beta,
cat ~ bernoulli(kappa),
kappa ~ beta(4,4),
alpha ~ exponential(0.1),
beta ~ exponential(0.1)

map2stan code
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generated quantities{
    vector[N] cat_impute;
    for ( i in 1:N ) {
        real logPxy;
        real logPy;
        if ( cat[i]==-1 ) {
            logPxy = log(kappa) + 

poisson_lpmf( notes[i] | beta);
            logPy = log_mix( kappa ,
                    poisson_lpmf( notes[i] | beta ),
                    poisson_lpmf( notes[i] | alpha ) );
            cat_impute[i] = exp( logPxy - logPy );
        } else {
            cat_impute[i] = cat[i];
        }
    }//i
}

Stan code
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               Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
kappa          0.52   0.13       0.30       0.72  1000    1
beta           7.40   1.44       5.00       9.52  1000    1
alpha         17.48   2.49      13.61      21.43  1000    1
cat_impute[1]  0.75   0.21       0.44       1.00  1000    1
cat_impute[2]  0.00   0.00       0.00       0.00  1000  NaN
cat_impute[3]  1.00   0.00       1.00       1.00  1000  NaN
cat_impute[4]  0.01   0.03       0.00       0.01   611    1
cat_impute[5]  1.00   0.00       1.00       1.00  1000  NaN
cat_impute[6]  0.00   0.00       0.00       0.00  1000  NaN
cat_impute[7]  1.00   0.00       1.00       1.00  1000  NaN
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Sly cats
• Cats are hard to detect! Birds always see them, but data 

logger misses them half the time.
• Unobserved cats as both “parameter” and “data”
• Occupancy model
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model {
    beta ~ exponential( 0.1 );
    alpha ~ exponential( 0.1 );
    kappa ~ beta(4,4);
    delta ~ beta(4,4);

    for ( i in 1:N ) {
        if ( cat[i]==1 )
            // cat present and detected
            target += log(kappa) + log(delta) + 

 poisson_lpmf( notes[i] | beta );
        if ( cat[i]==0 ) {
            // cat not observed, but cannot be sure not there
            // marginalize over unknown cat state:
            // (1) cat present and not detected
            // (2) cat absent
            target += log_sum_exp(
                    log(kappa) + log1m(delta) + 

   poisson_lpmf( notes[i] | beta ),
                    log1m(kappa) +  

       poisson_lpmf( notes[i] | alpha ) );
        }//cat==0
    }//i
}

Stan code
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       Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
beta   7.70   1.42       5.30       9.74  1000    1
alpha 18.13   2.57      14.47      22.46  1000    1
kappa  0.54   0.12       0.34       0.75  1000    1
delta  0.66   0.13       0.47       0.88  1000    1
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Four Unifying Forces

• Unity of data/parameters, 
likelihoods/priors:
1.Same derivations & calculations
2.Same inferential force => e.g. 

shrinkage
3.Do double duty, conditional on 

observation
4.Can be both in same analysis



Benefits of insider view

• Not necessary, but useful
• Think scientifically, not statistically

• Define generative model of all variables
• Use observed variables in inference

• Direct solutions to common problems
• Measurement messes, propagate uncertainty
• But lots of computational challenges remain!

• Unified approach to construction
• Demystifying. Deflationary.
• Help in teaching — Bayes NOT likelihood + priors



A Modest Proposal

Convention Proposal
Data Observed variable

Parameter Unobserved variable
Likelihood Distribution

Prior Distribution
Posterior Conditional distribution
Estimate banished
Random banished





Joint model Prob(notes, rate)

notesnotes

0 1 2 3 4 5 6 7 8 9 10

rate 0 0.06 0.06 0.03 0.01 0 0 0 0 0 0 0

1 0.02 0.05 0.05 0.03 0.02 0.01 0 0 0 0 0

2 0.01 0.02 0.04 0.04 0.03 0.02 0.01 0 0 0 0

3 0 0.01 0.02 0.03 0.03 0.03 0.02 0.01 0 0 0

4 0 0.01 0.01 0.02 0.03 0.03 0.02 0.02 0.01 0.01 0

5 0 0 0.01 0.01 0.02 0.03 0.03 0.02 0.02 0.01 0.01
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notesnotes

0 1 2 3 4 5 6 7 8 9 10

rate 0 0.06 0.06 0.03 0.01 0 0 0 0 0 0 0

1 0.02 0.05 0.05 0.03 0.02 0.01 0 0 0 0 0

2 0.01 0.02 0.04 0.04 0.03 0.02 0.01 0 0 0 0

3 0 0.01 0.02 0.03 0.03 0.03 0.02 0.01 0 0 0

4 0 0.01 0.01 0.02 0.03 0.03 0.02 0.02 0.01 0.01 0

5 0 0 0.01 0.01 0.02 0.03 0.03 0.02 0.02 0.01 0.01


