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A simple data generation
Drocess

Imagine a simple data generation process

yi ~ LogNormal(pu,0?) i=1,...,N

Example:
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Comparing means from two conditions
N reading time data

Option 1: A simple linear regression:
Yi s LogNormal(By + Brzi, 0°)

r; is coded +1/2 or —1/2

Estimate

Intercept

X



Comparing means from two conditions

N reading time data
Option 2: A hierarchical regression:

Yk ~ LogNormal(Bo + Bizir + b; + ck, o)
T,k 1s coded =+ 0.5
b; ~ Normal(0,0;) cx ~ Normal(0,0?)

|: subject, k: items

B3y is the estimated difference in means



Comparing means from two conditions
N reading time data:
A concrete example

M

a. The nurse who the doctor scolded resigned

ﬁ

b. The nurse who the doctor from the clinic scolded resigned

Mean reading times at resigned are longer in b vs a. Why?



Two theories about
dependency completion

Theory 1: Decay in working memory

A dis based explanation for reading ti
(Jus &C p r 1992; Gibson 1998, 2000 Lew

e differ
i & Vas hh2005)
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The decay model as a
hierarchical linear mogel

yix ~ LogNormal(By + B1 + bj + cp, %)
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Two theories about
dependency completion

Theory 2:Direct-access model

The direct access model of McElree et al., 2003 (see Nicenboim & Vasishth 2017).
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The direct-access model as
a mixture process

2

Yik ~p1 - LogNormal(p5y., o7 )+

(1 —p1) - LogNormal (s, 02))
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The direct-access model as a mixture
Drocess
(also see: Nicenboim & Vasishth, StanCon 2017)

Expected: p1 >p2 =




Implementing both models
N Stan

Decay model

Yik ~ LogNormal(By + B1x + b; + ck, (72)

Direct-access model

Yik ~D1 - LogNormal(,u;k, 0,2)+

(1 —p1) - LogNormal (g, 02))

Mc-stan.org

Yik ~D2 - LOgNormal(,u;-k, 07 )+

(1 — p2) - LogNormal (., 02))
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http://mc-stan.org

Research guestion

Which of the decay model and the direct-access
model characterises the data better?
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FoUur steps needed

e Step 1: Use fake data to validate mixture model

e Step 2: Estimate parameters of mixture model
from real data

e Step 3: Compare mixture model to hierarchical
model

eStep 4: Repeat steps 2,3 using new real data.
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Step 1: Validation of model using fake-data
simulation
(does mixture model recover parameters?)

Method

* (Generate fake data with fixed parameter values for
mixture distribution.

* Plot posterior distributions and determine whether
true parameters lie within 95% credible interval.

15



Mixture propbabillities:
parameters (fake data)




beta beta2

beta beta2 = /

5.7 5.8 59 6.0 6.50 6.75 7.00 7.25

sigma_e sigma_u

sigma_e sigma_u *

0.21 0.24 0.27 0.30 02 0.3 0.4

sigma_w

sigma_w
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Step 2: Estimate mixture
porobabilities: parameters (real data)

y .
y W
Y N
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Step 3: Model comparison
(Vehtari et al 20106)

To compare models, we compare predictive
performance of each model.

We use an approximation of leave-one-out Cross-
validation (Pareto-smoothed importance sampling).

Expected log pointwise density (epld) is a measure
of predictive accuracy.

Higher elpd implies better predictive performance.

HLM vs Mixture ELPD difference: 147.6 (17.2)
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Step 4: Do we obtain the

same results with new data”
ELPD diff: 147.6 (17.2) ELPD diff: 156.3 (28.9)

Replication data

ians and 80% intervals

N A
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reading time (ms)

Conclusion
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Conclusion

he evidence for the direct-access model
IS stronger than for the decay model.

Full paper: http://arxiv.org/abs/1702.00564
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http://arxiv.org/abs/1702.00564

Conclusion

Other evidence consistent with
direct-access model:

Nicenboim & Vasishth, StanCon 2017

Video, code:
http://bit.ly/NicenboimVasishthStanCon2017
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Conclusion

4 Michael Betancourt @betanalpha - Apr 10
Friends don't let friends fit mixture models, at least not for problems that matter.

¥ 14




Conclusion

| hope that | at least convinced you to take a look
at Stan for Bayesian modeling.

It's a powerful framework for building process models
and thinking in terms of the generative process
underlying your data.

We will teach a one-day Stan tutorial in Tubingen,
Sept 17, 2017: http://[fgme2017.de/
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