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Proteins in the post-genomic wild west

Sequences spectacularly outnumbers structures1.
The quest for methods to routinely predict, simulate or design
protein structure, dynamics and interactions continues.

1Picture: https://www.dnastar.com
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Today’s menu - some protein with maths

This talk concerns “the extraction of a force field from a data
base of known 3D structures, which reasonably models the
protein-solvent system” (Sippl, 1993). Such force fields or energy
functions are also important for modelling protein interactions.
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Protein folding and its forces

Electrostatic, hydrogen bonding, hydrophobic, van der Waals
and repulsive forces shape proteins into their 3-D folds2.
How can we derive information on these energies from the set of
known protein structures in a well-defined way?

2Picture: https://www.khanacademy.org
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Knowledge-based energy functions

Energy functions range from quantum mechanics over
Newtonian physics to statistical approaches3 – called
knowledge based energies.

Knowledge based energies are attractive because they can be
efficiently applied to simplified representations of proteins.
They aim to approximate the free energy.

3Picture: Boas & Harbury, Curr. Opinion Struct. Biol., 2007
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Turning probabilities into energies

Boltzmann’s law turns the energy ex of a microstate x into its
probability px ,

px =
1
Z

exp
(
−ex
kT

)
,

with k the Boltzmann’s constant, T the absolute temperature
and Z a normalization factor (Zustandssumme).
Hence, the inverse of Boltzmann’s law turns probabilities into
energies,

ex = −kT log (px)− kT log(Z ).

The main problem is that Z cannot be calculated for most
practical cases.
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Manfred Sippl’s bright idea (1990)

Sippl starts with the inverse of Boltzmann’s law,

ex = −kT log (px)− kT log(Z )

and subtracts a so-called reference energy Ex ,

Ex = −kT log (Px)− kT log(Z),

where Px is the probability of microstate x and Z is the
normalisation factor according to a certain reference state,

∆ex = ex − Ex = −kT log
(
px

Px

)
− kT log

(
Z
Z

)
.

Now, if we assume that Z
Z ≈ 1, the second term disappears.
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Sippl’s knowledge based energy for proteins

Following Sippl, the total energy of a protein conformation is,

∆e =
∑
x

−kT log
(
px

Px

)
,

where the sum runs over all pairwise distances.
The reference state is some random packing of amino acids.
For the 2D toy protein, px = p(distance r | colors involved).
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Justification by fuzzy analogy

Sippl’s approach works, but why does it work? Where does the
reference energy come from? Why is the subtraction needed?

Reversible Work Theorem for liquids

The reversible work required to bring two liquid particles from
infinite separation to a distance r from each other is

Wr = −kT log
(
pr

Pr

)
where pr and Pr are the probabilities of finding two particles at
a distance r in the liquid and the reference state.
The reference state is precisely defined as the ideal gas state,
consisting of non-interacting particles.
Wr is a so-called potential of mean force.
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Sippl in trouble

Sippl’s idea is based on some shaky assumptions.

1 Applying Boltzmann’s law is unwarranted.
The probablities do not come from a single protein’s Boltzmann
distribution, but from structures of many different proteins
from the Protein Data Bank (PDB).

2 Calling these energies potentials of mean force based on a
vague analogy with some physics of liquids is unwarrenated.

It’s not clear at all what to use as reference state.
People hack around and use what works.

3 Even if Sippl’s energy was a true potential of mean force, it
would not be the desired free energy.

So why does Sippl’s hack actually work, and is it optimal? To
answer that question, we will need to turn to the world of
Bayesian probability.
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Bayesian probability – a primer

Bayesian reasoning consists of updating a current belief on
parameter θ in the light of new data d .
The current belief is quantified as the prior distribution π(θ).
The data is quantified as the likelihood p(d | θ).

The updated belief is quantified as the posterior distribution

p(θ | d) ∝ p(d | θ)× π(θ)

posterior ∝ likelihood× prior
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Bayes in trouble

Sometimes, classic Bayesian updating is not applicable, notably
if we do not obtain data that can be related to a parameter, but
data on the changed probability of that parameter.

Example

Suppose we obtain data d concerning a parameter θ. Using the
standard Bayesian calculus, we update the prior over θ by
multiplication with the likelihood of d,

p(θ | d) ∝ p(d | θ)× π(θ).

Suppose we are given information I ≡ p(θ > 0) = ε instead.
How do we update π(θ)?

p(θ | I) ∝ ?× π(θ).
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Whitworth’s horses (1901)

Suppose four horses A,B,C ,D have equal probability of
winning in a race (p = 0.25).
However, the probability of A winning is updated to 0.4.
How can the individual probabilities of B,C or D winning be
updated?

The probability of B,C or D winning is 1− 0.4 = 0.6
Assuming they still have equal probability of winning, we obtain

p(B wins) = p(C wins) = p(D wins) = 0.6/3 = 0.2
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Whitworth’s horses and partitions

Whitworth’s problem requires updating of a prior distribution
based on new information on a partition with two elements:

1 {A wins}
2 {B wins, C wins, D wins} ≡ A loses.

The probabilities changed from (0.25, 0.75) to (0.4, 0.6).

We assume that the conditional probabilities of B,C ,D
winning remain the same

p(A loses) → changes from 0.75 to 0.6
p(B wins | A loses) → remains the same at 1/3

⇒ p(B wins | A loses)p(A loses) =
0.6
3

= 0.2

In other words, the relative probabilities of the elements within
the partitions remain the same.
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Jeffrey’s conditioning

Jeffrey’s conditioning or probability kinematics allows
Bayesian updating of a prior π(θ) given new information on a
partition E = {E1, . . . ,En} of the support Ωθ.

Jeffrey’s conditioning

We have a prior distribution π(θ) with matching π(Ei ).
We obtain new information on θ in the form of updated
probabilities p(Ei ). How do we update π(θ) to p(θ)?
If we assume the conditional probabilities remain the same, that
is π(θ | Ei ) = p(θ | Ei ) for all (i , θ), then

π(θ) = π(θ | Eθ)π(Eθ)

⇒ p(θ) = π(θ | Eθ)p(Eθ)

with Eθ being the partition that contains θ.
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Jeffrey reframed - The reference ratio

Jeffrey’s conditioning can be reformulated by a simple
application of Bayes’s theorem4. This is convenient if p(θ | Eθ)
is not available. It will also shed light on Sippl’s energy.

The reference ratio formulation

We start with the usual formulation of Jeffrey’s conditioning

p(θ) = π(θ | Eθ)p(Eθ)

and apply Bayes’ theorem to the first factor

p(θ) =
π(Eθ | θ)π(θ)

π(Eθ)
p(Eθ)

⇒ p(θ) =
p(Eθ)

π(Eθ)
π(θ)

4Hamelryck et al., PLoS ONE, 2010
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Back to the races

The reference ratio formulation of Jeffrey’s conditioning is

p(θ) =
p(Eθ)

π(Eθ)
π(θ).

Applied to Whitworth’s horses, this becomes

p(B wins) =
p(A loses)

π(A loses)
π(B wins)

=
0.6
0.75

× 0.25 = 0.2
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A local model of protein structure as prior

Suppose we have a prior distribution π(x) over the backbone
angles x of a protein, and that this distribution is only valid on
a local length scale.

Baker’s ROSETTA program pioneered the use of a fragment
library as π(x).
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Adding a global model using Jeffrey’s trick

The local model could be salvaged by adding a second model
with global information

This amounts to a multiscale modelling approach.

As global model, we use a probability distribution p(d) over the
pairwise distances d.

We can assume d = f (x), that is, if we know the angles we can
calculate the pairwise distances.

d = f (x) is many-to-one, and thus d induces a partition on Ωx.
Thus, we can combine the local with the global model using
Jeffrey’s conditioning,

p(x) =
p(d)

π(d)
π(x),

following the reference ratio formulation.
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Sippl’s energy explained

The probabilistic model of protein structure we obtained is

p(x) =
p(d)

π(d)
π(x).

If we formulate this model in terms of energies, using a
minus-log transformation, we get

e(x) = −kT log
(
p(d)

π(d)

)
− kT log(π(x))

which leads us to Sippl’s “potential of mean force” .
The reference distribution is defined by the local model π(x).
The last term is usually “invisible” because it is brought in by
sampling, ie. using a fragment library.

Thus, Sippl’s “potentials of mean force” can be understood as
an approximation of Jeffrey’s conditioning.
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A Bayesian model of protein structure

Probability kinematics allows to formulate an efficient
divide-and-conquer strategy for Bayesian protein structure
prediction, as follows:
Estimate a model π(x | a) that covers local protein structure

x=sequence of dihedral angles, a=amino acid sequence
This model is high-dimensional and detailed but not accurate
on the global scale.

Estimate a model p(y | a) that covers nonlocal protein structure
With y = f (x), that is, y is a low-dimensional, many-to-one
deterministic function of x
This model is accurate on the global scale but without detail.

Tie the two together using probability kinematics

p(x |a) =
p(y | a)

π(y | a)
π(x | a)
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Model of local protein structure

Typically, the local model consists of a fragment library that
models the backbone angles (φ,ψ).
We formulated a probabilistic model, based on a hidden Markov
model, that relates the amino acid sequence a to the dihedral
angles sequence x = (φ,ψ), using a bivariate von Mises
distribution on the torus5.

5Boomsma et al., PNAS, 2008 & 2014.
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Model of nonlocal protein structure

As a statistical descriptor of nonlocal structure, y = f (x), we
use a vector of five physical energies.

Hydrogen bond energy in helices, strands and coils
Hydrophobic energy and electrostatic energy (ionic bonds)

p(y |a) is a multivariate Gaussian distribution (obtained using
Bayesian Deep Learning6).

6Work in progress!
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The resulting posterior - summary

The resulting posterior is

p(x |a) =
p(y | a)

π(y | a)
π(x | a)

The nonlocal model p(y | a) is a 5-dimensional Gaussian that
models hydrogen bonding, electrostatic interactions and the
hydrophobic effect.
The local model π(x | a) is a hidden Markov model that models
the (φ, ψ) angles.
These models are easy to estimate and computationally efficient.
The posterior is valid on both the local and nonlocal scale.

However, often the estimation of π(y | a) forms a serious
bottleneck.
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Variational reference ratio I

In order to avoid the direct estimation of π(y | a), we use a
Gaussian approximation

p(x |a) =
p(y | a)

π(y | a)
π(x | a)

≈ N (y | µ,Σ)π(x | a)

= q(x |a,µ, Σ)

The parameters of the Gaussian are estimated by minimizing
the following Kullback-Leibler divergence

argmin
µ,Σ

DKL (q(y | a,µ, Σ) ‖ p(y | a))

This reminds of Variational Bayes estimation.
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Variational reference ratio II

VPK algorithm

Generate n samples {x1, . . . , xn} from π(x).
Choose an initial value (µ0,Σ0)

Assign weights to the samples equal to N (yi | µ0,Σ0)

with yi = f (xi )

Starting from (µ0,Σ0), use the downhill simplex method to find

(µ1,Σ1) = arg min
(µ,Σ)

DKL (q(y | a) ‖ p(y | a))

We need a method to compute the KL divergence between a
Gaussian and a set of weighted samples.
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Variational reference ratio III

Now we address the problem of calculating the KL divergence
between a Gaussian and a set of weighted samples.

The weights wi are given by the approximation of the ratio,
N (yi | µ,Σ).
The KL divergence is minimized in function of µ,Σ.

We write DKL(p ‖ q) in terms of the cross- and
differential-entropy.

DKL(q ‖ p) = SC (q ‖ p)− SD(q)

The cross entropy C can be readily calculated as

SC (q ‖ p) ≈ −
∑

i

wi log p(yi | a)

The differential entropy SD can be approximated using a
nonparametric nearest neighbor estimator7.

7Ajgl and Šimandl (2011)
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Example: Trp-Cage Miniprotein I

20 amino acids, Cα root mean square deviation=0.5 Å.
Native structure in dark grey; prediction (using native energy) in
light grey.
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Example: Trp-Cage Miniprotein II

Dashed black=target energy; Red=simulation using prior alone.
Blue=p(y | a)π(x | a), which amounts to assuming
independence of x and y.
Green=VRR solution, N (y | µ,Σ)π(x | a).
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Example: Trp-Cage Miniprotein III

Dashed black=target energy; Purple=simulation using energy.
Even though the energy is useful as a descriptor of nonlocal
structure, the protein cannot be folded using the energy itself.
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Implications and outlook

Searching for “knowledge based potentials/proteins” in Google
Scholar results in 3000+ hits.
After more than 25 years of heated discussion about Sippl’s
potentials, we finally know why they work – they approximate
Jeffrey’s conditioning.
The reference state is defined by the local model.

No more need to hack the reference state.

These energies generalize beyond pairwise distances.
Jeffrey’s conditioning opens the way to new, well-justified
energy functions.
Jeffrey’s conditioning allows us to formulate a complete
probabilistic model of proteins in atomic detail, for the first
time.
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Thank you

Wouter Boomsma, KU
Jesper Ferkinghoff-Borg, DTU
Jesper Foldager, KU
Jes Frellsen, KU⇒”We rediscovered Jeffrey’s conditioning!”
John Haslett, Trinity College, Dublin, Ireland
John T. Kent, Kanti V. Mardia, Leeds, UK
Douglas Theobald, Brandeis, USA
Dedicated to Richard Jeffrey (1926 – 2002)
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