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Outside view

Likelihood function

From Wikipedia, the free encyclopedia

For statistical inference using likelihood functions, see Bayesian statistics, maximum-
likelihood estimation, and likelihood-ratio testing.

In statistics, a likelihood function (often simply the likelihood) is a function of the
parameters of a statistical model given data. Likelihood functions play a key role in statistical
inference, especially methods of estimating a parameter from a set of statistics. In informal
contexts, "likelihood" is often used as a synonym for "probability." In statistics, a distinction is
made depending on the roles of outcomes vs. parameters. Probability is used before data {
are available to describe possible future outcomes given a fixed value for the parameter (or '
parameter vector). Likelihood is used after data are available to describe a function of a
parameter (or parameter vector) for a given outcome.

e

R.A. Fisher (1890-1962)



Outside view

® Data have distributions
® Parameters do not

® Distinguish parameters and
statistics

® |.ikelihood not a probability

distribution
® Imaginary population
® Bayes is sampling theory + priors

® Priors are uniquely subjective




Lineage of complaints

What most statisticians have is a parody of the Bayesian
argument, a simplistic view that just adds a woolly prior to
the sampling-theory paraphernalia. They look at the parody,
see how absurd it is, and thus dismiss the coherent approach
as well. Efron has studied the Bayesian argument more than
have most statisticians, but it is still only a parody that is
presented in this article. Many of the arguments he produces
are distortions of the thing he is attacking.

Dennis Lindley (1923-2013)

The American Statistician, February 1986, Vol. 40, No. 1



Conceptual friction

® Common barriers:

® Thinking data must look like
likelihood function

® Degrees of freedom

® “Sampling” as source of all
uncertainty

® Defining random eftects via
sampling design

® Neglect of data uncertainty

® add your own



My Book is Neo-Colonial

Texts in Statistical Science

® | feel bad about choices made Statistical
® Uses outsider perspective Ret_hlﬂklﬂg.
A Bayesian Course with
® “I.ikelihood” Examples in R and Stan

® “parameter”
® “estimate”
® [ike explaining Indian politics
using British political parties
® Perpetuates confusion heil @‘%

. . . Richard McElreath
® Historical necessity?

CRC Press
Taryhor & Francis Group
A CHAPMAN & HALL BOOK




Another path

® Claim: Bayes easier and more
powerful when understood from
the inside

® Problem: Many insider views

46656 Varieties AT L
of Bayesians (#765) T

Some attacks and defenses of the Bayesian posmon assume that it is unique so it :—j -
should be helpful to point out that there are at least 46656 different interpreta- ». -
tions. This is shown by the following classification based on eleven facets. The =t
count would be larger if | had notartificially made some of the facets discrete and |}
my heading would have been “On the Infinite Variety of Bayesians."

L]. Good 1971 F‘




Insider perspective

® Bayesian approach: A joint
generative model of all variables

® Key ideas:
® Unity among variables: No

deep distinction between data
and parameters

® Unity among distributions: No
deep distinction between
likelihoods and priors




Likelihood or Prior?

B ~ Normal(b,%)



Likelihood or Prior?

B ~ Normal(b,%)
If B is observed, likelihood.

If B is unobserved, prior.



Corner cases

® In conventional GLMs, no problem distinguishing data
from parameters.

e But what about:
e GLMMs
® Missing data

® \Measurement error

e Many strange machines




| > notes

/

rate of singing when cat present

rate of singing when cat absent

cat




Observed variables Unobserved variables

notes rate of singing when cat present
cat rate of singing when cat absent



Joint model

Prob(notes, cat, rate|cat, rate|no-cat)



Joint model

Prob(notes, cat, rate|cat, rate|no-cat)

notes; ~ Poisson(A;)
At = (1 — caty)a + caty8
o ~ Exponential(1/10)
3 ~ Exponential(1/10)




How is prior formed?

® What pre-data information do we have about unobserved
variables?

® Rates are non-zero positive real values. Model expected
value ==maxent==> Exponential

® This most conservative distribution consistent w info

A exp(A)




How is prior formed?

® What pre-data information do we have about unobserved
variables?

® Rates are non-zero positive real values. Model expected
value ==maxent==> Exponential

® This most conservative distribution consistent w info
e ike priors, likelihoods are pre-data distributions.
® Use pre-data information (meta-data) to build them.

® Notes are zero or positive integers. Model expected value
==maxent==> Poisson

® Again, most conservative distribution consistent w info



notes; ~ Poisson(\;)
At = (1 — caty)a + caty3
o ~ Exponential(1/10)
B ~ Exponential(1/10)

Stan code

dataq{
int<lower=1> N;
int notes[N];
int cat[N];

+
parameters{
real<lower=0> alpha;
real<lower=0> beta;
+
model{
vector [N] lambda;
beta ~ exponential( 0.1 );
alpha ~ exponential( 0.1 );
for ( i in 1:N ) {
lambdal[i] = (1 - cat[i]) * alpha + cat[i] * beta;
+
notes ~ poisson( lambda );
+

map2stan code

notes ~ poisson(lambda),

lambda <- (1-cat)*alpha + catx*beta,
alpha ~ exponential(0.1),

beta ~ exponential(0.1)

https://gist.github.com/rmcelreath
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GLMM birds

® Multiple birds, each with own rates:

notes;; ~ Poisson(\;)
Air = (1 — caty) o + caty3;
o; ~ Exponential(1/a)
; ~ Exponential(1/3)
o ~ Exponential(1/10)
3 ~ Exponential(1/10)
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example, in a growth study, a model with random intercepts «; and fixed
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fixed and random coefficients.
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1. Fixed effects are constant across individuals, and random effects vary. For
example, in a growth study, a model with random intercepts «; and fixed
slope B corresponds to parallel lines for different individuals i, or the model
vit = a; + Bt. Kreft and de Leeuw [(1998), page 12] thus distinguish between
fixed and random coefficients.

2. Effects are fixed if they are interesting in themselves or random if there is
interest in the underlying population. Searle, Casella and McCulloch [(1992),
Section 1.4] explore this distinction in depth.

3. “When a sample exhausts the population, the corresponding variable is fixed;
when the sample is a small (i.e., negligible) part of the population the
corresponding variable is random” [Green and Tukey (1960)].

4. “If an effect 1s assumed to be a realized value of a random variable, it 1s called
a random effect” [LaMotte (1983)].

5. Fixed effects are estimated using least squares (or, more generally, maximum
likelihood) and random effects are estimated with shrinkage [“linear unbiased
prediction” in the terminology of Robinson (1991)]. This definition is standard
in the multilevel modeling literature [see, e.g., Snijders and Bosker (1999),
Section 4.2] and in econometrics.

In the Bayesian framework, this definition implies that fixed effects ,8( )

are estimated conditional on 0,, = o0 and random effects ,8 ) are estlmated
conditional on o, from the posterior distribution.



GLMM birds

® Shrinkage happens everywhere

notes;; ~ Poisson(\;)

)\it — (1 — cat,-t)ozi —+ cat,-,ﬁ,-

a; ~ Exponential(1
B; ~ Exponential(1

a ~ Exponential(1

/N N N /N

B ~ Exponential(1l




Efron’s example of “shrinkage estimator”
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JAMES-STEIN ESTIMATORS for the 18 baseball players were calculated by “shrinking” the
individual batting averages toward the overall “average of the averages.” In this case the grand
average is .265 and each of the averages is shrunk about 80 percent of the distance to this value.
Thus the theorem on which Stein’s method is based asserts that the true batting abilities are
more tightly clustered than the preliminary batting averages would seem to suggest they are.



Galton’s “regression to mean”
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int<lower=1> N;
int<lower=1> N_-1d;
int notes[N];

Stan code

vector<lower=0>[N_id] alpha;
vector<lower=0>[N_id] beta;
real<lower=0> alpha_bar;
real<lower=0> beta_bar;

vector [N] lambda;
beta_bar ~ exponential( 0.1 );
alpha_bar ~ exponential( 0.1 );
beta ~ exponential( 1.0/beta_bar );
alpha ~ exponential( 1.0/alpha_bar );
for (i in 1:N ) {
lambdal[i] = (1 - cat[i]) * alphal[id[i]]

+ cat[i] * betal[id[i]];

notes ~ poisson( lambda );

data{
notes;; ~ Poisson(\;)
)‘it — (1 — cat,-t)cvi -+ catitﬁi int cat[N];
o; ~ Exponential(1/&) int id[N];
_ }
B; ~ Exponential(1/7) parameters{
a ~ Exponential(1/10)
3 ~ Exponential(1/10)
}
model{
}
map2stan code )

notes ~ poisson(lambda),

lambda <- (1-cat)*alpha[id] + catxbeta[id],
alpha[id] ~ exponential(l.0/alpha_bar),
beta[id] ~ exponential(l.0/beta_bar),
alpha_bar ~ exponential(0.1),

beta_bar ~ exponential(0.1)

https://gist.github.com/rmcelreath
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Bad data, good cats

® Jointly model cat behavior:

notes; ~ Poisson(\;)
At = (1 — caty)a + caty3
cat; ~ Bernoulli(k)
k ~ Beta(4,4)
a ~ Exponential(1/10)
B ~ Exponential(1/10)

dbeta(x, 4, 4)

20

1.0

0.0

00 02 04 06 08 1.0
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Bad data, good cats

® Useful when some data go missing: some cat_# observations
unavailable—cats stepped on the keyboard.

® Same distribution does double duty:

notes; ~ Poisson(\;)
)\t = (1 — Catt)Oé + Cattﬁ
cat; ~ Bernoulli(k)
k ~ Beta(4,4) N
00 02 04 06 08 10
o ~ Exponential(1/10) x
B ~ Exponential(1/10)

20

dbeta(x, 4, 4)
1.0

0.0




notes; ~ Poisson ()
At = (1 — caty)a + caty3
cat; ~ Bernoulli(x)
K ~ Beta(4,4)
a ~ Exponential(1/10)
B ~ Exponential(1/10)

map2stan code

parameters{

real<lower=0,upper=1> kappa; Stan code
real<lower=0> beta;

real<lower=0> alpha;

beta ~ exponential( 0.1 );

exponential( 0.1 );
beta( 4 , 4 );
in 1:N ) {

if ( cat[il==-1 ) { // cat missing

target += log_mix( kappa ,
poisson_1lpmf( notes[i] | beta ),
poisson_1lpmf( notes[i] | alpha )
)3

} else { // cat not missing

}

model{
alpha ~
kappa ~
for ( 1

cat[i]*beta

}

/A

}

cat[i] ~ bernoulli(kappa);
notes[i] ~ poisson( (l-cat[i])*alpha +

)5

notes ~ poisson(lambda),

lambda <- (1-cat)*alpha + catxbeta,
cat ~ bernoulli (kappa),

kappa ~ beta(4,4),

alpha ~ exponential(0.1),

beta ~ exponential(0.1)

https://gist.github.com/rmcelreath
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notes; ~ Poisson(\;)
At = (1 — caty)a + cat 8
cat; ~ Bernoulli(k)
K ~ Beta(4,4)
a ~ Exponential(1/10)
B ~ Exponential(1/10)

generated quantities{

vector[N] cat_impute; Stan code
for (i in 1:N ) {
real logPxy;
real logPy;
if ( cat[i]==-1 ) {
logPxy = log(kappa) +
poisson_1lpmf( notes[i] | beta);
logPy = log_mix( kappa ,
poisson_lpmf( notes[i] | beta ),
poisson_1lpmf( notes[i] | alpha ) );

cat_impute[i] = exp( logPxy - logPy );
} else {
cat_impute[i] = cat[i];
}
/A

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
kappa 0.52 0.13 0.30 0.72 1000 1
beta 7.40 1.44 5.00 9.52 1000 1
alpha 17.48 2.49 13.61 21.43 1000 1
cat_impute[l] 0.75 0.21 0.44 1.00 1000 1
cat_impute[2] 0.00 0.00 0.00 0.00 1000 NaN
cat_impute[3] 1.00 0.00 1.00 1.00 1000 NaN
cat_impute[4] 0.01 0.03 0.00 0.01 611 1
cat_impute[5] 1.00 0.00 1.00 1.00 1000 NaN
cat_impute[6] 0.00 0.00 0.00 0.00 1000 NaN
cat_impute[7] 1.00 0.00 1.00 1.00 1000 NaN

https://gist.github.com/rmcelreath



https://gist.github.com/rmcelreath
https://gist.github.com/rmcelreath

Sly cats

® Cats are hard to detect! Birds always see them, but data
logger misses them half the time.

® Unobserved cats as both “parameter” and “data”

o Occupancy model

notes; ~ Poisson(\;)
At = (1 — caty)a + cat8
catobs ¢ ~ Bernoulli(cat; X §)
cat; ~ Bernoulli(x)
K ~ Beta(4,4)
0 ~ Beta(4,4)
o ~ Exponential(1/10)
B ~ Exponential(1/10)




notes; ~ Poisson(\;)

At = (1 — caty)a + caty3

catops ¢ ~ Bernoulli(cat; X 0)

cat; ~ Bernoulli(k)
k ~ Beta(4,4)
o ~ Beta(4,4)

o ~ Exponential(1/10)
B ~ Exponential(1/10)

model {

beta ~ exponential( 0.1 ); Stan Code
alpha ~ exponential( 0.1 );

kappa ~ beta(4,4);
delta ~ beta(4,4);

for (i in 1:N ) {
if ( cat[i]==1 )
// cat present and detected
target += log(kappa) + log(delta) +
poisson_1lpmf( notes[i] | beta );
if ( cat[i]==0 ) {
// cat not observed, but cannot be sure not there
// marginalize over unknown cat state:
// (1) cat present and not detected
// (2) cat absent
target += log_sum_exp/(
log(kappa) + loglm(delta) +
poisson_1lpmf( notes[i] | beta ),
loglm(kappa) +
poisson_1lpmf( notes[i] | alpha ) );

Mean StdDev

beta 7.70
alpha 18.13
kappa 0.54
delta 0.66

1.42
2.57
0.12
0.13

}//cat==0
F/ /1
lower 0.89 upper 0.89 n_eff Rhat
5.30 9.74 1000 1
14.47 22.46 1000 1
0.34 0.75 1000 1
0.47 0.88 1000 1

https://gist.github.com/rmcelreath
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Four Unitying Forces

® Unity of data/parameters,
likelihoods/priors:

1.Same derivations & calculations

2.S5ame inferential force => e.g.

shrinkage

3.Do double duty, conditional on
observation

4.Can be both in same analysis



BRAIN

Benefits of insider view

FICKLE WEART
POOP FACTORY

IN
® Not necessary, but useful oIS
® Think scientifically, not statistically

® Define generative model of all variables
PURR MACHINE

® Use observed variables in inference
® Direct solutions to common problems

® Measurement messes, propagate uncertainty

® But lots of computational challenges remain!
® Unified approach to construction

® Demystifying. Deflationary.
® Help in teaching — Bayes NO'T likelihood + priors



A Modest Proposal

Convention Proposal
Data Observed variable
Parameter Unobserved variable
Likelihood Distribution
Prior Distribution
Posterior Conditional distribution
Estimate banished
Random banished






Joint model

rate 0

GT = W N

Prob(notes, rate)

notesﬁ

o 1 2 3 4 5 6 7 8 9 10
0.06[0.06/0.03/0.01] 0 | O | O | O | O | O | O
0.02(0.05|0.05|0.03]0.02{0.01| 0 | O | O | O | O
0.01{0.02{0.04|0.04|0.03{0.02(0.01| 0 | O | O | O
0 |0.01[0.02{0.03/0.03{0.03|0.02/0.01] 0 | O | O
0 |0.01[0.01{0.02/0.03{0.03|0.02/0.02{0.01{0.01| 0
0 | 0 [0.01]0.01/0.02[0.03]0.03/0.02{0.02|0.01{0.01




Prob(notes, rate)

Joint model

notes ﬁ
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