The many meanings of mathematical concepts

$6 \cdot(7)=6 \cdot(5+2)=6 \cdot 5+6 \cdot 2$
$6 \cdot 7=6 \cdot(5+2)=6 \cdot 5+6 \cdot 2$

Situations and iconic schematic imagery

 Addition - "lägga ihop" / "lägga till"

$$
f(x, y)=x+y
$$

$$
f_{a}(x)=x+a
$$

Subtraction

Take away / compare

$$
f_{a}(x)=x-a=f_{-a}(x)
$$

Mathematics (NE)

An abstract and general science for problem solving and methods development
... and symbol system development

345342

$$
f(x)
$$

(x, y)

$$
\int_{a}^{b} f(x) d x
$$

$\frac{a}{b}$

Symbol systems

1 a set of arbitrary physical tokens that are
2 manipulated on the basis of "explicit rules" that are
3 likewise physical tokens and strings of tokens. The rule-governed symbol-token manipulation is based
4 purely on the shape of the symbol tokens (not their "meaning"), i.e., it is purely syntactic, and consists of
5 "rulefully combining" and recombining symbol tokens. There are
6 primitive atomic symbol tokens and
7 composite symbol-token strings. The entire system and all its parts-the atomic tokens, the composite tokens, the syntactic manipulations both actual and possible and the rules- are all
8 "semantically interpretable:" The syntax can be systematically assigned a meaning (e.g., as standing for objects, as describing states of affairs) (Harnad, 1990, p. 336).

$$
\begin{aligned}
& \frac{a}{b},=+ \\
& \frac{a}{b}=\frac{c}{d} \Leftrightarrow a b=c b \\
& \frac{a}{b}+\frac{c}{d}=\frac{a d+c b}{b d} \\
& \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
\end{aligned}
$$

$$
\begin{array}{ccc}
\frac{7}{4} & \frac{1}{3} & \frac{a / b}{a} \\
\frac{\cos (x)}{\sin (x)} & \frac{0.5}{6.7} & \frac{\sqrt{3}}{2} \\
\frac{x^{2}+1}{2 x^{3}-4 x} & \frac{\sum_{n=0}^{\infty} a_{n} X^{n}}{\sum_{n=0}^{\infty} b_{n} X^{n}}
\end{array}
$$

Fractions

(Quiotient constructions)

Part-whole
Division (partitive, equal sharing)
Measuring
Linearity
Rate
Ratio
Proportionality

"How many 2's are there in 10?"
$\frac{a}{b}$ is a symbol c such that $a=b c$

Upper secondary
 grade 1
 ("grade 10"

Grade 5 ("We repeat fractions")

1.3 Tal i bråkform

Hur stor andel? Om du delar en pizza itvà lika stora delar fâr du tvà halvor.
$\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1$
Om du delar pizzan
farr du tre tredjedelar
$\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=$
Elna delar sin pizza ifiärdedelar och äter tre av delarna. Hur stor andel av pizzan treav hola
$\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}$
Hon äter tre fjärdedelar av pizzan.

Tre fä̈rdedelar är ett tal som i bråkform kan skrivas

 Talet ovanför bråkstrecket talar om hur många delar vi har (3 stycken) Omvandla tal i bråkform till decimalform kan vi enkelt göra med ı
Tabellen visar năgra viktiga omvandlingar du bör kunna utantill! Tabellen visar några viktiga omvandlingar du bör kunna utantil

38. Division - delningsdivision

Charlie, Isa och Liam delar 12 godisbitar lika mellan sig.
"En till Charlie, en till Isa, en till Liam, en till Charlie, en till Isa, en till Liam ..."
C 1
(L)
C 1
(L)
C I
(L)
(C)
(I)
(L)

Alla får fyra godisbitar var.

1. Dela godisbitarna lika mellan Charlie (C), Isa (I) och Liam (L). Hur många godisbitar får de var?
b.
a.

Svar: \qquad godisbit
Svar: \qquad

Öva begreppen.
Lyssna på berättelsen
39. Division - innehållsdivision @ Film Lussn pab ercitelesen.

I. Du lägger 18 bullar i påsar. Hur många påsar behöver du?
I. Det ska vara 3 bullar i varje påse.
b. Det ska vara 6 bullar i varje påse.

Svar: \qquad pasar \qquad

40. Att skriva division

Lyssna på berättelsen.
$\square \square \square$
Det finns sex glasskulor. I varje bägare ska det vara 2 kulor glass. Hur många bägare behövs det?
Divisionen kan skrivas
$\frac{6}{2}=3 \quad \frac{\text { täljare }}{\text { nämnare }}=$ kvot
eller
$6 / 2=3$
täljare/nämnare $=$ kvot
Du säger: Sex delat med två är lika med tre, eller sex dividerat med två är lika med tre.

1. Dividera.

a. $\frac{8}{2}=$ \qquad
b. $\frac{9}{3}=$

1000 - 101

41. Sambandet mellan division och multiplikation

 n Lyssna på berättelsen.

Det finns 12 böcker. Hur många högar får du, om du lägger 4 böcker i varje hög? $\frac{12}{4}=3$

Du kan kontrollera division med multiplikation.
$3 \cdot 4=12$

1. Dividera. Kontrollera division med multiplikation.
9080
©

08
100000

-

c. $\frac{12}{6}=$ \qquad
a. $\frac{8}{2}=4$
4. \qquad
\qquad
b. $\frac{6}{3}=$ \qquad
\qquad
\qquad $=$ \qquad
\qquad
. \qquad $=$ \qquad
-

Grade	Mathematical content	Concept	Procedure	Connection
3	division, equal sharing division, equal grouping division, equal grouping multiplication and division division, equal grouping proportionality fractions, geometric part whole fractions, geometric part whole fractions, geometric part whole fractions, one whole			$\nabla \longrightarrow \pi$
4	division, equal grouping and sharing division, short division division, short division fractions, equal fractios	$\begin{gathered} \because+\boldsymbol{\Gamma} \longrightarrow \pi \\ \boldsymbol{\varphi} \longrightarrow \pi \end{gathered}$	$\longrightarrow \pi \pi^{\longrightarrow}$	
5	fractions, mixed fractions fractions, reducing fractions fractions, reducing to lowest term dividing fraction with whole number multiply fraction with whole number fractions, fraction of numbers		$\begin{aligned} & \longrightarrow \\ & \longrightarrow \\ & \\ & \pi \\ & \longrightarrow \\ & \\ & \pi \end{aligned} \pi$	$\begin{aligned} & { }_{+}^{+}+\boldsymbol{\top} \longrightarrow \pi \\ & \mathrm{O}_{+} \boldsymbol{\bullet} \longrightarrow \pi \end{aligned}$
6	fractions, geo. part whole, mixed fractions, convert to and from mixed fractions, reducing, reducing to lowest term fractions, expanding fractions		$\begin{aligned} & \longrightarrow \\ & \longrightarrow \\ & \longrightarrow \\ & \longrightarrow \end{aligned}$	

Grade	Mathematical content	Concept	Procedure	Connection
7	fractions, geometric part whole fractions, geometric part hole bigger than one fractions, size of fractions fractions, equal fractions fractions, reduce fractions fractions, expanding fractions fractions, fraction of number fractions, geometric part whole fractions, fractions bigger than one fractions, equal fractions		π $\begin{aligned} & \longrightarrow \\ & \hline \end{aligned}$	
8	fractions, part whole of numbers fractions, equal fractions multiply a fraction with a whole number multiply fractions multiply fractions fractions fractions, expand and reduce fractions, reduce fractions with variables* fractions, division of fractions* fractions, division of fractions, inverse* fractions, division of fractions with variables*			
9	fractions, comparing fractions fractions, equal fractions, reducing, expanding fractions, multiply fractions	$\stackrel{\bullet}{\bullet} \longrightarrow \pi$	$\longrightarrow \pi$	$\nabla \longrightarrow \pi$

Polysemy
 When one word has several but related meanings

When one concept has several but related meanings

Part-whole
Division (partitive, equal sharing)
Measuring
Linearity
Rate
Ratio
Proportionality

On Proof and Progress in Mathematics

WILLIAM P. THURSTON

People have very different ways of understanding particular pieces of mathematics. To illustrate this, it is best to take an example that practicing mathematicians understand in multiple ways, but that we see our students struggling with. The derivative of a function fits well. The derivative can be thought of as:
(1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
(2) Symbolic: the derivative of x^{n} is $n x^{n-1}$, the derivative of $\sin (x)$ is $\cos (x)$, the derivative of $f^{\circ} g$ is $f^{\prime \circ} g * g^{\prime}$, etc.
(3) Logical: $f^{\prime}(x)=d$ if and only if for every ε there is a δ such that when $0<|\Delta x|<\delta$,

$$
\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}-d\right|<\delta .
$$

(4) Geometric: the derivative is the slope of a line tangent to the graph of the function, if the graph has a tangent.
(5) Rate: the instantaneous speed of $f(t)$, when t is time.
(6) Approximation: The derivative of a function is the best linear approximation to the function near a point.
(7) Microscopic: The derivative of a function is the limit of what you get by looking at in under a microscope of higher and higher power.

The list continues; there is no reason for it ever to stop.

37. The derivative of a real-valued function f in a domain D is the Lagrangian section of the cotangent bundle $T^{*}(D)$ that gives the connection form for the unique flat connection on the trivial \mathbf{R}-bundle $D \times \mathbf{R}$ for which the graph of f is parallel.

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, e^{x}=? \quad e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

$$
e^{x}=y: y^{\prime}=y, y(0)=1
$$

Consequences for teaching?

Thank you for listening

