Spring (VT) courses in Numerical Analysis

Mengwu Guo

October 2025

All are *advanced* courses in half pace for 7.5 credits:

- ► NUMN26 Simulation Tools VT1
- ► NUMN28 Numerical Simulations of Flow Problems VT2
- NUMN33 Numerical Methods for Partial Differential Equations VT1
- ► BERN07 Computational Science: Uncertainty Quantification & Data-driven Modelling VT2

NUMN26 Simulation Tools – VT1

Primary learning goals:

- Modeling with with Scientific Computing knowledge and programming skills
- Experience with industrially relevant computational problems for complex mechanical systems
- In-depth knowledge of advanced numerical methods for ODEs, nonlinear systems, etc.
- Team work for computational projects

Main prerequisites: knowledge corresponding to

- NUMA01 Computational Programming with Python
- NUMN32 Numerical Methods for Differential Equations

NUMN33 Numerical Methods for PDEs - VT1

Primary learning goals:

- Deepened knowledge on numerical approximations for PDEs: Weak theory for elliptic PDEs, finite elements, domain decomposition, adaptivity, Unified Form Language (UFL), ...
- ► Simulation problems governed by PDEs and software (DUNE-FEM)

Main prerequisites: knowledge corresponding to

- NUMA01 Computational Programming with Python
- NUMN32 Numerical Methods for Differential Equations

NUMN28 Numerical Simulations of Flow Problems – VT2

Primary learning goals:

- Knowledge on modern numerical methods for non-linear conservation laws, especially in Computational Fluid Dynamics (CFD) Aircraft design, wind turbines, climate systems, ...
- Numerical skill with advanced methods: such as Discontinuous Galerkin, Krylov subspace with preconditioning, Jacobian-free Newton-Krylov, multigrid, ...

Main prerequisites: knowledge corresponding to

▶ NUMN32 Numerical Methods for Differential Equations

BERN07 Uncertainty Quantification & Data-driven Modelling – VT2

Course in Computational Science

Primary learning goals:

- Advanced concepts and methods in modern scientific computing for modeling and simulation under uncertainties
- ► Interdisciplinary taste across *numerical analysis*, *applied statistics*, and *machine learning* with applications to *physics* and *mechanics*
- Project work close to forefront research

Main prerequisites: knowledge corresponding to

- NUMA01 Computational Programming with Python
- ► MASA02 Mathematical Statistics, Basic Course
- ► NUMN32 Numerical Methods for Differential Equations

Master's programme in Computational Science

- Using computational methods to solve modern scientific problems
- Integrating theoretical knowledge with practical skills Modeling, simulations, programming
- Interdisciplinary approaches combing elements from scientific computing, data science, advanced programming and various natural science disciplines such as physics and geoscience
- Critical thinking, problem-solving, and analytical skills
- Diverse and inclusive environment with participants from various countries and cultural backgrounds
- Career prospects: academia, industry, government sectors ... Research, technology, healthcare, finance, software development, data science, environmental science ...

Page Manager: webbansvarig@math.lu.se | 2023-04-21

three separate specializations:

· Scientific Computing

Geoscience

Physics

· Scientific Computing

All Courses

PhD studies

Scientific Computing Group at Mathematics NF

- Philipp Birken, Professor
 Scientific Computing for a Sustainable World
 Iterative Solvers, coupled problems, compressible flows
- ► Robert Klöfkorn, Associate Professor

 Open-Source Software for High-Performance Computing

 High-performance computing, software framework DUNE for PDEs
- Mengwu Guo, Associate Professor
 Scientific Machine Learning under Uncertainties
 Data-driven modeling, probabilistic numerical methods, digital twins

All active in teaching courses and supervising degree projects in both Numerical Analysis and Computational Science!

Feel free to contact us!

Mengwu Guo

mengwu.guo@math.lu.se

https://www.mengwuguo.com/