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The purpose of this paper is to explain the theory behind the R pack-
age grassopt, which provides functions for minimizing a function over a
Grassmann manifold. For details of the functions we refer to the manual;
this is a more general introduction to the theory behind them. The theory
mainly comes from [1] by Edelman et al., where Newton’s method and the
conjugate gradient method is adapted from the usual Euclidean space to
the Stiefel and Grassmann manifolds. These manifolds are viewed as Rie-
mannian manifolds with canonical metrics, which means that we get a way
to define the gradient and the Hessian of a function on the manifold as well
as geodesics on the manifold. The background needed is some Riemannian
geometry, including knowledge of tangent spaces and geodesics on Rie-

mannian manifolds. An accessible introduction to Riemannian geometry
is [2].

Newton’s method

Newton’s method minimizes a convex function f over R" through the
following steps:

1. Start with an initial guess x; and a tolerance e.
2. Repeat:

(a) Compute the Newton step Ax = —(Hess(f)™! - Vf)

(b) Use line search to find the step size .
(c) Letx, =x,.1 +1t-Ax.

until Vf(x,)TAx <e.



When f is not convex, i.e. when Hess(f) is not positive semidefinite ev-
erywhere, Ax is not always a descent direction. In order to work also for
non-convex functions the Hessian can be replaced by B = Hess(f) + €I,
where € is chosen so that B is positive definite. This case is not treated in
[1], but it is implemented in grassopt and we will return to it in the end.

In their extension of Newton’s method to functions on Stiefel and Grass-
mann manifolds Edelman et al. used the gradient and the Hessian from
Riemannian geometry to define the Newton step.

Gradient and Hessian on a Riemannian manifold

Let (M, g) be a Riemannian manifold with metric g. Then the gra-
dient of a function f: M — R at x € M is defined as the unique
tangent Vf such that

d
$(Vf,0) = dof = —(Fr 1)) (1)

for any tangent vector v. y(t) is any curve in M such that y(0) = x
and y(0) = v. The Hessian of f is a tensor field of type (2,0), i.e.
Hess(f): "M ® T*"M — R. It can for example be defined by

Hess(f)(X,Y) = X(Y(f)) - df(VxY),

where V is the Levi-Civita connection on (M, g). If X =Y = y(0)
where y is a geodesic on (V] g), then VxY =0, so

2
Hess()(X, Y) = X(Y() = 5 f(r )], - @

The Newton step is determined as the unique tangent vector V,,; such that
Hess(f)(Vi, V) = g(=Vf,V) €)

for all tangent vectors V. Since the Hessian is symmetric and bilinear, (2)
can be used to compute the Hessian for any X and Y. By polarization we
get

Hess(f)(X,Y) = 411 {Hess(/)(X+Y,X+Y)—Hess(f)(X-Y,X-Y)}.



Lines in R" corresponds to geodesics on a Riemannian manifold, so
when updating x, instead of moving along a line we move along the
geodesic with tangent V,,;.

The Grassmann Manifold

A point on the Grassmann manifold Gr(p, ) is represented by an orthonor-
mal basis for the subspace, i.e. an n X p-matrix Y such that Y'Y = I. Clearly
this representation is not unique, each Y corresponds to one point on the
Stiefel manifold V,(IR") of which Gr(n, p) is a quotient space. If p = 1, then
V,(R") = O(n). The equivalence relation yielding Gr(p, n) as a quotient
space of V,(IR") is

Y~Y e 3AQe0p): Y=YQ.

This means that two matrices are equivalent if their columns span the same

subspace of R", hence a point in the quotient space represents a p-plane in
R".

The Tangent Space

The quotient space representation Gr(p, n) = V,(IR")/~ can be used to find
the tangent space of Gr(p,n). By differentiating Y'Y = I we see that the
tangent space of the Stiefel manifold at Y consists of all matrices V such
that YV is skew symmetric. If Y, is any n-by-(n — p) matrix such that
[Y Y,] € O(n), a tangent can also be written as

V=YA+Y,B,

where A is skew-symmetric (p-by-p) and B is arbitrary ((n — p)-by-p).
The p-by-p skew-symmetric matrices constitute the tangent space to
O(p), hence the tangents V = YA are also tangents to the submanifold

M=1{Y:Y ~Y}.

The tangents V = Y, B belong to the normal space of this submanifold
under the Euclidean inner product metric ¢(A, B) = tr(ATB), which is the
canonical metric for the Grassmann manifold and the one used here. The
tangent space of M at Y is called the vertical space and the normal space
of M at Y is called the horizontal space. Vectors fields the horizontal space
represent tangents of the quotient manifold [3], hence V = Y, B are the
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tangents of the Grassmann manifold. An equivalent characterization is
that V is a tangent to Gr(p, n) at Y if

Y'v=0.

It is easy to see that the orthogonal projection onto the tangent space of
Gr(p,n)atYisn(Z) = (I - YYT)Z.

The Gradient

Since we use the Euclidean inner product metric on the Grassmann mani-
fold, from (1) we get that the gradient of the function F on the Grassmann
manifold is

VF=n(Fy)=(I-YY")Fy,
where

0
(el = 2o @)
ij

The Geodesics

Geodesics on the Grassman manifold have a very nice form when we
represent points by n X p matrices. If H is a tangent in the horizontal space
at Yo and H = UZVT is the compact singular value decomposition of H,
then the geodesic which has direction H at Y is

_ cos Lt)\ .1
Y(t) = (YoV U) (sin Zt) Ve 5)
To arrive at this expression Edelman et al. first find that geodesics in the
Stiefel manifold satisfy the differential equation

Y+YY'Y)=0, (6)

then they show that Y'Y is constant along a geodesic on the Stiefel mani-
fold. This means that if Y(t) is horizontal for some t, then Y'Y = 0 along
the geodesic, i.e. Y(t) is horizontal for all t. Hence a geodesic on the Stiefel
manifold with Y(0) = H is a geodesic along the Grassmann manifold. Now,
in order to see that (5) is a geodesic it is enough to verify that it satisfies (6).



The Hessian

Let Y(t) be the geodesic (5). Define Fy, from (4) and Fy,y, from

oF

Fy)ijn = 5o
( YY)Z],kl aYz'j aYkl

Fyy(Hi, Ha) = ) (Fy)jaa(Hij(Ha) -
ikl

Then by (2)

2
Hess(F)(H, H) = %F(Y(t))L:O = %tr(PlT/(t)Y(t))L:o

= Fy,y,(H, H) + tr(F}, Y(0))
= Fy,v,(H, H) — tr(Fy, YoH'H) ,

and from polarization

Hess(F)(H1, Hy) = Fy,y,(H1, Hy) — tr(F} YoH{ H) .

Newton step on the Grassmannian

Now we have the ingredients in equation (3) for the Grassmann manifold.
Let ITr = I — YYT denote the projection matrix for the projection onto the
tangent space. The Newton step for the function F at the point Y on the
Grassmann manifold is the unique tangent V,,; such that

Fry(Var, V) = a(FLYVEV) = —¢(TIsFy, V) @)

for all tangents V at Y. If we let f;(V) be the matrix defined by

Fr(V) = Z(FYY)z’j,leij ,
ij

the left-hand side of this equation can be written as

Fyy(Vir, V) = ti(FLYVEV) = tr(Fyy (Vi) TV) — e (V. YTFY)TV)
= g([IrFyy (V) = Vit YTFy, V) .

This means that (7) holds for all tangents V' if and only if

rFyy (Vi) = Vi YTFy = —TI7Fy . (8)



This is a system of np linear equations and np unknowns, and we can
write it as

(=IIrFy),,; = Z Z(HT)mk(FYY)ij,kl = Ly (Y'Fy) it | (V)i )
7 Uk

where I.,nq is the indicator function, i.e. I, = 1 if a is true and I, = 0 oth-
erwise. The system (8) can be underdetermined, but using the additional
constraint Y'V,; =0, V,; is determined uniquely.

Newton’s method for non-convex functions

In Euclidean space, if the Hessian is not positive definite we replace it with
B = Hess(f) + el when we compute the Newton step, i.e. Ax = (Hess(f) +
el)"'Vf. Then Axis always a descent direction. When we get close to a local
minimum, the Hessian is positive definite, so we get the same Newton step
as in the convex case.

To find the analogous method for optimization over a Grassmann man-
ifold we first consider the matrix A that maps tangent vectors to tangent
vectors through

vec(V) - vec(IIrFyy(V) = VYTEy) .

The operator vec: R”7 — R takes the columns in a matrix and put them
after each other into one column vector. From (9) we see that

(A)a-vyntm,(j-tyntm = Z(HT)mk(F y¥)ijkt = Li=m (Y Fy) it -
R

This matrix represents the Hessian:
Hess(F)(V1)(V5) = vec(V1) A vec(V,)
and when we find the Newton step we solve
A-vec(Vy) = —vec(VF), Y'V,=0.

In order to get rid of the constraint YTV,; = 0 we consider the matrix
representing the Hessian of the projection of two arbitrary matrices.



If V1, V, € R™" are two arbitrary n X p matrices, the Hessian of their
projections onto the tangent space can be written as

Hess(F)(HTVl, HT Vz)
= Z(FYY)ij,kl(HTVl)ij(HTvl)kl - Z(Z(HTVZ)il(YTPY)lj)(HTvl)ij
ikl 7o

= )" Fr)ign QY i (V)Y ()i V2)a)

ijkl m

= Y QT (VYD) TTr)in(Va)u)
l n m

= Y 1D YT = Y ()anY Py )i [ (Vi) (V2D

mjnl\_ ij i

= vec(V1) A vec(V>)

where

(A)(j=vyn+m,(-1ynn = Z(FYY)z‘j,kl(HT)im(HT)kn - Z(YTFY)lj(HT)in(HT)im
K 7

= Z(HT)im(HT)kn((FYY)ij,kl — (Y'Fy);liizi)
ik
= (T (Fyy)- X1 mn — (YT Fy )y (NI T ) i - (10)
If YTFy is not symmetric, A might not be symmetric, however

Hess(F)(I17 V1,111 V3) = Hess(F)(I1 Vo, I Vy)
= vec(V1)TAvec(V,) = vec(V,) A vec(Vy) = vec(V1) AT vec(V,)

so we can replace A by A = (A + AT)/2. Now if V,; satisfies
A -vec(V,;) = —vec(VF),
V,; = 7V, satisfies

Hess(F)(V,, V) = Hess(E)(I1r Vo, I17V) = vec(V) A vec(V,,)
= —vec(V) vec(VF) = ¢(-VFE V)

for all tangent vectors V. Furthermore, if € is chosen such that A + €l is
positive definite and

vec(V,) = —(A + el) 'vec(VF),
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then V,; is in the tangent space (since Avec(V,;) and VF are) and it is a
descent direction since

‘Fvnt

¢(VE V) = tr(VFT, V) = vec(VF) vec(V )
—vec(VE) (A + el) 'vec(VF) < 0 .

In the function ntStep in grassopt, the Newton step V,; is deter-
mined the following way:

1. A is computed from (10). A = (A + AT)/2.

2. Let A, be the smallest eigenvalue of A (A, < 0) and let
€= /\tol - Amin-

3. vec(V,) = —(A + el)'vec(VF)
4. Vnt = HTVnt-

Example

Below is an example application, minimization of the function F(Y) =
tr(YTAY)/2, where A is a symmetric matrix. For this function Fy = AY and
(Fyy)iju = 01if j # I and (Fyy)iju = Ai otherwise. The minimum of this
function is the sum of the p smallest eigenvalues. As can be seen in figure
1, after a certain threshold we get cubic convergence.
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Figure 1: Example of optimization using grassopt. F(Y) = tr(YTAY)/2,
where A is a symmetric matrix. In this instance n = 20 and p = 4.



