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The purpose of this paper is to explain the theory behind the R pack-
age grassopt, which provides functions for minimizing a function over a
Grassmann manifold. For details of the functions we refer to the manual;
this is a more general introduction to the theory behind them. The theory
mainly comes from [1] by Edelman et al., where Newton’s method and the
conjugate gradient method is adapted from the usual Euclidean space to
the Stiefel and Grassmann manifolds. These manifolds are viewed as Rie-
mannian manifolds with canonical metrics, which means that we get a way
to define the gradient and the Hessian of a function on the manifold as well
as geodesics on the manifold. The background needed is some Riemannian
geometry, including knowledge of tangent spaces and geodesics on Rie-
mannian manifolds. An accessible introduction to Riemannian geometry
is [2].

Newton’s method

Newton’s method minimizes a convex function f over Rn through the
following steps:

1. Start with an initial guess x0 and a tolerance ε.

2. Repeat:

(a) Compute the Newton step ∆x = −(Hess( f )−1
· ∇ f )

∣∣∣
xn

.

(b) Use line search to find the step size t.

(c) Let xn = xn−1 + t · ∆x.

until ∇ f (xn)T∆x < ε.
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When f is not convex, i.e. when Hess( f ) is not positive semidefinite ev-
erywhere, ∆x is not always a descent direction. In order to work also for
non-convex functions the Hessian can be replaced by B = Hess( f ) + εI,
where ε is chosen so that B is positive definite. This case is not treated in
[1], but it is implemented in grassopt and we will return to it in the end.

In their extension of Newton’s method to functions on Stiefel and Grass-
mann manifolds Edelman et al. used the gradient and the Hessian from
Riemannian geometry to define the Newton step.

Gradient and Hessian on a Riemannian manifold
Let (M, g) be a Riemannian manifold with metric g. Then the gra-
dient of a function f : M → R at x ∈ M is defined as the unique
tangent ∇ f such that

g(∇ f , v) = ∂v f :=
d
dt

( f (γ(t)))
∣∣∣
t=0

(1)

for any tangent vector v. γ(t) is any curve in M such that γ(0) = x
and γ̇(0) = v. The Hessian of f is a tensor field of type (2, 0), i.e.
Hess( f ) : T∗M ⊗ T∗M→ R. It can for example be defined by

Hess( f )(X,Y) = X(Y( f )) − d f (∇XY) ,

where ∇ is the Levi-Civita connection on (M, g). If X = Y = γ̇(0)
where γ is a geodesic on (M, g), then ∇XY = 0, so

Hess( f )(X,Y) = X(Y( f )) =
d2

dt2 f (γ(t))
∣∣∣
t=0
. (2)

The Newton step is determined as the unique tangent vector Vnt such that

Hess( f )(Vnt,V) = g(−∇ f ,V) (3)

for all tangent vectors V. Since the Hessian is symmetric and bilinear, (2)
can be used to compute the Hessian for any X and Y. By polarization we
get

Hess( f )(X,Y) =
1
4
{
Hess( f )(X + Y,X + Y) −Hess( f )(X − Y,X − Y)

}
.
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Lines in Rn corresponds to geodesics on a Riemannian manifold, so
when updating x, instead of moving along a line we move along the
geodesic with tangent Vnt.

The Grassmann Manifold

A point on the Grassmann manifold Gr(p,n) is represented by an orthonor-
mal basis for the subspace, i.e. an n× p-matrix Y such that YTY = I. Clearly
this representation is not unique, each Y corresponds to one point on the
Stiefel manifold Vp(Rn) of which Gr(n, p) is a quotient space. If p = n, then
Vp(Rn) = O(n). The equivalence relation yielding Gr(p,n) as a quotient
space of Vp(Rn) is

Y ∼ Y′ ⇐⇒ ∃Q ∈ O(p) : Y = Y′Q .

This means that two matrices are equivalent if their columns span the same
subspace of Rn, hence a point in the quotient space represents a p-plane in
Rn.

The Tangent Space

The quotient space representation Gr(p,n) = Vp(Rn)/∼ can be used to find
the tangent space of Gr(p,n). By differentiating YTY = I we see that the
tangent space of the Stiefel manifold at Y consists of all matrices V such
that YTV is skew symmetric. If Y⊥ is any n-by-(n − p) matrix such that
[Y Y⊥] ∈ O(n), a tangent can also be written as

V = YA + Y⊥B ,

where A is skew-symmetric (p-by-p) and B is arbitrary ((n − p)-by-p).
The p-by-p skew-symmetric matrices constitute the tangent space to

O(p), hence the tangents V = YA are also tangents to the submanifold

M = {Y′ : Y′ ∼ Y} .

The tangents V = Y⊥B belong to the normal space of this submanifold
under the Euclidean inner product metric g(A,B) = tr(ATB), which is the
canonical metric for the Grassmann manifold and the one used here. The
tangent space of M at Y is called the vertical space and the normal space
of M at Y is called the horizontal space. Vectors fields the horizontal space
represent tangents of the quotient manifold [3], hence V = Y⊥B are the
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tangents of the Grassmann manifold. An equivalent characterization is
that V is a tangent to Gr(p,n) at Y if

YTV = 0 .

It is easy to see that the orthogonal projection onto the tangent space of
Gr(p,n) at Y is π(Z) = (I − YYT)Z.

The Gradient

Since we use the Euclidean inner product metric on the Grassmann mani-
fold, from (1) we get that the gradient of the function F on the Grassmann
manifold is

∇F = π(FY) = (I − YYT)FY ,

where
(FY)i j =

∂F
∂Yi j

. (4)

The Geodesics

Geodesics on the Grassman manifold have a very nice form when we
represent points by n× p matrices. If H is a tangent in the horizontal space
at Y0 and H = UΣVT is the compact singular value decomposition of H,
then the geodesic which has direction H at Y0 is

Y(t) = (Y0V U)
(
cos Σt
sin Σt

)
VT. (5)

To arrive at this expression Edelman et al. first find that geodesics in the
Stiefel manifold satisfy the differential equation

Ÿ + Y(ẎTẎ) = 0 , (6)

then they show that YTẎ is constant along a geodesic on the Stiefel mani-
fold. This means that if Ẏ(t) is horizontal for some t, then YTẎ = 0 along
the geodesic, i.e. Ẏ(t) is horizontal for all t. Hence a geodesic on the Stiefel
manifold with Ẏ(0) = H is a geodesic along the Grassmann manifold. Now,
in order to see that (5) is a geodesic it is enough to verify that it satisfies (6).
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The Hessian

Let Y(t) be the geodesic (5). Define FY0 from (4) and FY0Y0 from

(FYY)i j,kl =
∂F

∂Yi j∂Ykl
, FYY(H1,H2) =

∑
i j,kl

(FYY)i j,kl(H1)i j(H2)kl .

Then by (2)

Hess(F)(H,H) =
d2

dt2 F(Y(t))
∣∣∣
t=0

=
d
dt

tr(FT
Y(t)Ẏ(t))

∣∣∣
t=0

= FY0Y0(H,H) + tr(FT
Y0

Ÿ(0))

= FY0Y0(H,H) − tr(FT
Y0

Y0HTH) ,

and from polarization

Hess(F)(H1,H2) = FY0Y0(H1,H2) − tr(FT
Y0

Y0HT
1 H2) .

Newton step on the Grassmannian

Now we have the ingredients in equation (3) for the Grassmann manifold.
Let ΠT = I − YYT denote the projection matrix for the projection onto the
tangent space. The Newton step for the function F at the point Y on the
Grassmann manifold is the unique tangent Vnt such that

FYY(Vnt,V) − tr(FT
YYVT

ntV) = −g(ΠTFY,V) (7)

for all tangents V at Y. If we let F̂YY(V) be the matrix defined by

(F̂YY(V))kl =
∑

i j

(FYY)i j,klVi j ,

the left-hand side of this equation can be written as

FYY(Vnt,V) − tr(FT
YYVT

ntV) = tr(F̂YY(Vnt)TV) − tr((VntYTFY)TV)

= g(ΠTF̂YY(Vnt) − VntYTFY,V) .

This means that (7) holds for all tangents V if and only if

ΠTF̂YY(Vnt) − VntYTFY = −ΠTFY . (8)
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This is a system of np linear equations and np unknowns, and we can
write it as

(−ΠTFY)ml =
∑

i j

∑
k

(ΠT)mk(FYY)i j,kl − I{i=m}(YTFY) jl

 (Vnt)i j , (9)

where Icond is the indicator function, i.e. Ia = 1 if a is true and Ia = 0 oth-
erwise. The system (8) can be underdetermined, but using the additional
constraint YTVnt = 0, Vnt is determined uniquely.

Newton’s method for non-convex functions

In Euclidean space, if the Hessian is not positive definite we replace it with
B = Hess( f ) + εI when we compute the Newton step, i.e. ∆x = (Hess( f ) +
εI)−1
∇ f . Then ∆x is always a descent direction. When we get close to a local

minimum, the Hessian is positive definite, so we get the same Newton step
as in the convex case.

To find the analogous method for optimization over a Grassmann man-
ifold we first consider the matrix A that maps tangent vectors to tangent
vectors through

vec(V) 7→ vec(ΠTF̂YY(V) − VYTFY) .

The operator vec : Rn×p
→ Rnp takes the columns in a matrix and put them

after each other into one column vector. From (9) we see that

(A)(l−1)n+m,( j−1)n+m =
∑

k

(ΠT)mk(FYY)i j,kl − I{i=m}(YTFY) jl .

This matrix represents the Hessian:

Hess(F)(V1)(V2) = vec(V1)TA vec(V2)

and when we find the Newton step we solve

A · vec(Vnt) = −vec(∇F) , YTVnt = 0 .

In order to get rid of the constraint YTVnt = 0 we consider the matrix
representing the Hessian of the projection of two arbitrary matrices.
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If V1,V2 ∈ Rn×p are two arbitrary n × p matrices, the Hessian of their
projections onto the tangent space can be written as

Hess(F)(ΠTV1,ΠTV2)

=
∑
i j,kl

(FYY)i j,kl(ΠTV1)i j(ΠTV1)kl −

∑
i j

(
∑

l

(ΠTV2)il(YTFY)l j)(ΠTV1)i j

=
∑
i j,kl

(FYY)i j,kl(
∑

m

(ΠT)im(V1)mj)(
∑

n

(ΠT)kn(V2)nl)

−

∑
l

((
∑

n

(ΠT)in(V2)nl)(YTFY)l j)(
∑

m

(ΠT)im(V2)mj)

=
∑
mj,nl

∑
i j

(FYY)i j,kl(ΠT)im(ΠT)kn −

∑
i

(ΠT)in(YTFY)l j(ΠT)im

 (V1)mj(V2)nl

= vec(V1)TÃ vec(V2)

where

(Ã)( j−1)n+m,(l−1)n+n =
∑

ik

(FYY)i j,kl(ΠT)im(ΠT)kn −

∑
i

(YTFY)l j(ΠT)in(ΠT)im

=
∑

ik

(ΠT)im(ΠT)kn((FYY)i j,kl − (YTFY)l jI{i=k})

= (ΠT
T(FYY)· j,·lΠT)mn − (YTFY)l j(ΠT

TΠT)mn . (10)

If YTFY is not symmetric, Ã might not be symmetric, however

Hess(F)(ΠTV1,ΠTV2) = Hess(F)(ΠTV2,ΠTV1)

⇒ vec(V1)TÃ vec(V2) = vec(V2)TÃ vec(V1) = vec(V1)TÃT vec(V2)

so we can replace Ã by Ā = (Ã + ÃT)/2. Now if Ṽnt satisfies

Ā · vec(Ṽnt) = −vec(∇F) ,

Vnt = ΠTṼnt satisfies

Hess(F)(Vnt,V) = Hess(F)(ΠTṼnt,ΠTV) = vec(V)TĀ vec(Ṽnt)

= −vec(V)Tvec(∇F) = g(−∇F,V)

for all tangent vectors V. Furthermore, if ε is chosen such that Ā + εI is
positive definite and

vec(Vnt) = −(Ā + εI)−1vec(∇F) ,
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then Vnt is in the tangent space (since Ā vec(Vnt) and ∇F are) and it is a
descent direction since

FVnt = g(∇F,Vnt) = tr(∇FT,Vnt) = vec(∇F)Tvec(Vnt)

= −vec(∇F)T(Ā + εI)−1vec(∇F) < 0 .

In the function ntStep in grassopt, the Newton step Vnt is deter-
mined the following way:

1. Ã is computed from (10). Ā = (Ã + ÃT)/2.

2. Let λmin be the smallest eigenvalue of Ā (λmin ≤ 0) and let
ε = λtol − λmin.

3. vec(Ṽnt) = −(Ā + εI)−1vec(∇F)

4. Vnt = ΠTṼnt.

Example

Below is an example application, minimization of the function F(Y) =
tr(YTAY)/2, where A is a symmetric matrix. For this function FY = AY and
(FYY)i j,kl = 0 if j , l and (FYY)i j,kl = Aik otherwise. The minimum of this
function is the sum of the p smallest eigenvalues. As can be seen in figure
1, after a certain threshold we get cubic convergence.
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Figure 1: Example of optimization using grassopt. F(Y) = tr(YTAY)/2,
where A is a symmetric matrix. In this instance n = 20 and p = 4.
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