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Abstract

In the field of molecular biology many data sets with thousands, tens of
thousands or even more variables are produced daily, for example in genomics.
Traditional statistical approaches such as hypothesis testing cannot exploit the
full potential of such data sets when there are functional relations between the
variables, and if the functional relations are non-linear also linear methods such
as PCA do not work.

The more general approach is to look for manifolds on which the data
are supported, and the first step in most manifold learning methods is to
determine the dimension of the manifold. In this work we review five current
methods of manifold dimension estimation: PCA, Takens’ estimator, the Hill
estimator, vector quantization, and k–NN. We also introduce a novel dimension
estimator — the expected absolute projection (EAP) estimator, and compare its
performance to the five other methods. The results do not show any significant
advantage of the EAP estimator, however we do suggest improvements of the
EAP estimator which might render it competitive.



∼Tack ∼

Mitt tack går först till tre fantastiska lärare: Magnus Fontes vars engagemang
och entusiasm varit inspirerande och till stor hjälp för detta arbete; Victor
Ufnarovski som var den som lärde mig matematik på riktigt och så min mor —
otvivelaktigt den viktigaste läraren av dem alla.

Jag vill också tacka Charlotte Soneson för den hjälp och inspiration du bistått
med.



Contents

1 Introduction 4

2 Definitions of Dimension 8
2.1 Topological Dimension . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Fractal Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Intrinsic Dimension Defined by the Curse of Dimensionality . . 15

3 PCA 18

4 Correlation Dimension Estimation 20
4.1 Takens’ Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The Hill Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Vector Quantization 23

6 k–NN Dimension Estimation 25
6.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 A Novel Approach: Expected Absolute Projection 28
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Method Comparisons: Local Dimension Estimation 34
8.1 Simulated data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Parameter and Design Choices . . . . . . . . . . . . . . . . . . . 36
8.3 EAP Dimension Estimator: Initial Tests . . . . . . . . . . . . . . 37
8.4 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.5 n-Spheres and Hyper Cube Faces . . . . . . . . . . . . . . . . . . 40
8.6 Hyper Cube Edges . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.7 High-Dimensional Noise . . . . . . . . . . . . . . . . . . . . . . . 42

9 Conclusions 44

A Quantization Dimension Estimation 46

2



B Additional Details About the Design of the Estimators 48
B.1 Maximal projection . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.2 Choice of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.3 Varying cut-off radius r for Takens’ estimator . . . . . . . . . . . 49

C General Results 50

D Manifolds 51

E Measure theory 54

List of notation

| · | Absolute value or Euclidean length.
a||b a is parallell to b
x Mean value of {xi}i∈I.

Bδ(x) The open ball of radius δ centered at x.
A The closure of the set A.

3



Chapter 1

Introduction

In many areas of science today vast amounts of data are produced. Genomics
is one area where the number of variables measured for each sample is often
in the order of tens of thousands. One example is genomewide measurements
of gene expression, where the amount of mRNA resulting from transcription is
measured for each gene. By using hypothesis testing on such data it might be
possible to immediately single out individual genes which have fundamental
impact on a certain feature of the samples, but it is more often the case that
groups of genes together form patterns which can be used to discriminate
between groups of samples. This leads to two questions: a) What are the
groups of genes and what are the relations between the genes in each group?
and b) Using this information, how can we better discriminate features of
samples? One way to address these questions is to use linear methods, i.e.
to compute covariance or correlation between variables and use some linear
model. This has been done successfully for many gene expression data sets
over the last decade e.g. through principal components analysis (PCA); one of
the early examples is [36]. However, the relations between genes might very
well be non-linear, and then linear methods will yield sub-optimal results. This
prompts for methods to find non-linear structures in data, and the natural step
is to look for manifolds1.

Consider the example in figure 1.1. The data behind the two graphs have
identical variance for each variable and identical correlation, but it can easily be
seen that the second data set lies on a 1-manifold (a curve) whereas the first data
set does not. These two data sets are the first two in Anscombe’s quartet from 1973
[1], which were constructed to show the importance of using graphs in statistical
analyses. The problem is that when there are more than three variables it is
generally impossible to plot the data since our world is three-dimensional;
in principle one could utilize color and time to visualize extra dimensions,
but in any case we cannot visualize more than a few dimensions. With tens
of thousands of variables, as in gene expression data, we need unsupervised
methods that can find manifolds in the high-dimensional data.

Manifold learning and non-linear dimension reduction is a field of much
research interest, often with applications in image processing in mind. The
first step in manifold learning or dimension reduction is usually to find the

1For the reader unfamiliar with manifolds, appendix D gives a condensed review of the back-
ground needed for this thesis.
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Figure 1.1: Two data sets with variance 10 and 3.75 for the first and second
variable respectively, and correlation 0.898.

dimension of the manifold [28], and in the cases when the manifold learning
algorithm itself can determine the dimension it is helpful to have an indepen-
dent estimate of the dimension. Furthermore, as we can see from the example
in figure 1.1, the dimension of the manifold on which the data lie can be a very
useful piece of information. Hence it is important to find ways to estimate this
dimension.

It very unlikely though that we will find data perfectly aligned on a manifold
with lower dimension than the number of variables. What we might expect is
a manifold with some noise added to it. This is equivalent to a model where
a number of independent latent variables, that are fewer than the number of
measured variables, account for a strong signal in the data, and the rest of the
variation in the data is considered to be noise. The number of latent variables
will be the dimension of the manifold.

When the aim is dimension reduction or manifold learning it is necessary to
distinguish the dimension of the manifold and disregard the noise. However,
if a dimension estimate is used to describe the degree of data dependencies it is
reasonable to model the noise as due to latent variables with smaller variance
than the variables defining the manifold. The intrinsic dimension of the data,
which is usually defined as the number of independent latent variables, is then
somewhat higher than the dimension of the manifold.

In this thesis however, intrinsic dimension estimation means to estimate
the dimension of a manifold which might have noise added to it. The reason
is that methods for intrinsic dimension estimation are constructed to measure
dimension of manifolds and we do not try to quantify the contribution of noise
in other ways than applying our dimension estimators to simulated data sets
of manifolds with noise and discuss the results.

The first method to estimate intrinsic dimension was PCA, it was invented
by Pearson already in 1901 [31]. It is a linear method, so it yields the dimension
of the minimal linear subspace which fits the data well. The first non-linear
method for dimension reduction and intrinsic dimension estimation was non-
metric multidimensional scaling, introduced by Shepard in 1962 [38].

With the discovery of strange attractors in dynamical systems a need arose
to estimate dimension of very complicated sets, since it was realized that the
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dimension was an important characteristic of an attractor. But strange attrac-
tors do not have a dimension in the usual meaning of the word, a feature
they have in common with fractals. The generalized concept of dimension
used initially is usually known as box-counting dimension [12, 18] and it mea-
sures how a set fills out space. However, in 1983 a new concept of dimension
was introduced independently by Grassberger and Procaccia [18] and Takens
[39] — the correlation dimension. The correlation dimension is better suited
for numerical estimation than the box-counting dimension and Takens devel-
oped subsequently a maximum likelihood estimator [40]. Grassberger [17] and
Hentschel and Procaccia [24] generalized independently the concept of corre-
lation dimension to an infinite series of dimensions, the Rényi dimensions (the
name is due to their close relation to Rényi entropy [37]). The Rényi dimensions
have subsequently become the basis for multifractal analysis [21], which is the
study of systems with non-constant fractal dimension. From the Rényi dimen-
sions the local fractal dimension can be determined by a Legendre transform
under certain conditions [21]; this is an interesting approach but it has been
outside the scope of this thesis.

During the last decade, a number of novel methods for intrinsic dimension
estimation have been proposed [7, 23, 26, 32, 35]. Kégl presented in 2002 a novel
way to estimate box-counting dimension [26]; in 2004 Costa et al published a
paper in which lengths of certain random graphs on manifolds were utilized
to estimate dimension, a method which later developed into what is called
k–NN dimension estimation [4, 7]; Raginsky and Lazebnik presented in 2004
an estimator based on vector quantization and showed that it was a general-
ization of the estimator of Kégl [35]; and in 2005 Hein and Audibert published
an estimator of correlation dimension that was specially adapted for data on
manifolds [23]. A completely different approach was presented by Pestov in
2008 [32], he used what is called the curse of dimensionality to approach the
problem of dimension estimation.

To this list we now add a dimension estimator based on the smallest possible
constant in the reversed triangle inequality, which is also related to the curse
of dimensionality as we will see in section 2.3. We call it the expected absolute
projection (EAP), for reasons that will become clear in chapter 7.

In this thesis we have chosen five methods of dimension estimation to review
along with our own: Local PCA [15], Takens’ maximum likelihood estimator
[40] and a similar estimator from [21] called the Hill estimator, the vector
quantization estimator by Raginsky and Lazebnik [35] and k–NN dimension
estimation [4, 5, 7, 8]. The methods have been selected for their comparatively
high performance.

There is one category of methods of dimension estimation that is not touched
upon in this thesis, and that is trial-and-error methods based on non-linear re-
duction techniques [3, 29]. These techniques tries to embed the data into a
manifolds of varying dimension and returns a score of how well this can be
done. The score is plotted for each dimension and the dimension estimate will
be the dimension after which the score flattens out. Examples includes mul-
tidimensional scaling and neural network-methods. Trial-and-error methods
are very computationally intensive, but might nevertheless be useful.

The next chapter introduces various mathematical definitions of dimension,
including box-counting dimension and correlation dimension and gives some
results about how these are related to each other. The not so mathematically
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interested reader might read just the definitions of correlation dimension and
box-counting dimension. Then there is one chapter for each dimension estima-
tor (Takens’ and the Hill estimator are together in one chapter). Finally, results
from tests of the dimension estimators on a number of simulated data sets are
presented and discussed.

We have assumed throughout that the reader is familiar with measure the-
ory. For the reader who is interested in understanding the mathematics but
that does not have the appropriate background, appendix E introduces a few
concepts and properties.

In appendix C proofs are given of some general results that are used in this
thesis.
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Chapter 2

Definitions of Dimension

2.1 Topological Dimension

There are three canonical definitions of dimension in topology: Lebesgue cov-
ering dimension and the small and large inductive dimensions. These are
topological invariants, i.e. constant under homeomorphisms and for separable
metric spaces they are equal [13]. For a separable metric space their common
value is called the topological dimension.

The definition of the Lebesgue covering dimension is:

Definition 2.1. The Lebesgue covering dimension of a set S in a metric space is the
smallest number n such that any finite open cover of S has a finite open refinement
covering S such that any point in S belongs to at most n + 1 sets in the refinement.
({Vα} is a refinement of {Uβ} if there for each Vα exist a Uβ such that Vα ⊆ Uβ.)

Using that the Lebesgue covering dimension of Rd is d, it follows imme-
diately that a d–manifold has locally dimension d, however it is much more
difficult to prove that the entire manifold has dimension d, but it can be done
by viewing the manifold as a polyhedron [11, 13].

It can easily be seen that any finite set has topological dimension zero,
whereas the closure of a set has the same topological dimension as the set, so
any countable dense set in a metric space has the same topological dimension
as the space itself.

Thus topological dimension basically agrees with our intuitive idea of di-
mension, but the Lebesgue covering dimension definition is not possible to
use as a means for dimension estimation, other than that it establishes that a
d–manifold has indeed dimension d.

2.2 Fractal Dimensions

Now we will turn to generalizations of the usual concept of dimensions, where
the dimension is allowed to be a non-integer.

We will present three fractal dimension definitions: the Hausdorff dimen-
sion, the box-counting dimension, and the correlation dimension. We will also
give a definition of local dimension in a point. The box-counting dimension
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Figure 2.1: The von Koch curve.

and the correlation dimension are special cases of the Rényi dimensions, but
we will not present the general form here, the interested reader can find it in
[21] or [28].

For these generalized concepts of dimension to be useful, it is necessary that
they agree with the topological dimension for manifolds and that they satisfy
the basic inequality

A ⊆ B⇒ dim(A) ≤ dim(B). (2.1)

That (2.1) holds will become immediately clear from the definitions, and the
reader can either consult [12] or prove as an exercise that the Hausdorff dimen-
sion and the box-counting dimension is d for d–manifolds.

The correlation dimension differs from the other concepts of dimension
presented here in that it defines dimension for a probability measure and not a
set. It might seem odd, but this is in fact what makes it so suitable for empirical
dimension estimation. The reason is that when we estimate dimension from a
given data set we assume that the data are realizations of a random variable
whose support is a manifold of a certain dimension, possibly with noise added.
So if we use a dimension definition that applies to a set we need to estimate
the support of the random variable, i.e. the support of the probability measure,
before we can use the definition. If we have a definition of dimension that
applies to a probability measure though, we can use the definition directly on
the empirical distribution given by the data. This requires of course that the
correlation dimension for the probability measure we study will agree with the
topological dimension of its support. Towards the end of this section we will
see that this is true for uniform measures on mildly regular manifolds.

The Hausdorff dimension was invented by Hausdorff in 1919 [22]; it is the
oldest fractal dimension definition and it is defined for any set, as opposed to
the box-counting dimension [12]. To introduce it we need another definition
which also will become useful later:

Definition 2.2 (Hausdorff measure). For a subset S of a metric space (X, ρ) and a
non-negative number m, we define for any δ > 0

Hm
δ (S) = inf

∑
i∈N

diam(Ui)m :
⋃
i∈N

Ui ⊇ S; Ui open, diam(Ui) < δ ∀i ∈N


where diam(U) = sup{ρ(x, y) : x, y ∈ U}. The m–dimensional Hausdorff measure of
S is then

Hm(S) = lim
δ→0

Hm
δ (S).
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Then we have

Definition 2.3 (Hausdorff dimension). The Hausdorff dimension of a set S in a
metric space (X, d) is

dimH(S) = inf{m : Hm(S) = 0}.

The Hausdorff dimension is a valuable theoretical tool, but it is unfeasible to
use for empirical dimension estimation. The box-counting dimension is closely
related to it, and it allows for a straightforward method of estimation.

Box-counting dimension is defined for totally bounded sets, i.e. sets such
that for any δ > 0 they can be covered by a finite number of balls of radius δ.
In Rn the totally bounded sets are the bounded sets.

Definition 2.4 (Box-counting dimension). For a totally bounded set S in a metric
space, let Nδ(S) be the minimal number of balls of radius δ that cover S. The box-
counting dimension is then

dimBC(S) = lim
δ→0

log Nδ(S)
− log δ

if the limit exists1.

The name box-counting dimension comes from an equivalent definition
which is identical to the one above except that Nδ(S) is defined as the number
of boxes in a δ–mesh that intersect S [12].

A direct result of the definitions 2.3 and 2.4 is:

Proposition 2.1. dimBC(S) ≥ dimH(S)

Proof. Suppose that dimBC(S) = d and m > d. Choose an ε > 0 such that
ε < m − d. Then by the definition of box-counting dimension we can find a
δ0 > 0, such that for all δ < δ0

d + ε >
log Nδ(S)
− log δ

.

Then
δ−d−ε > Nδ(S)⇒ δ−ε > Nδ(S)δd.

From the definition of Nδ(S) we know that there is a cover of S consisting of
Nδ(S) open balls with radius smaller than or equal to δ. Thus

Hm
δ (S) ≤ Nδ(S)δm = Nδ(S)δdδm−d < δ−εδm−d = δ(m−d)−ε.

But δ(m−d)−ε
→ 0 as δ→ 0, since (m − d) − ε > 0. This means that Hm(S) = 0 for

all m > d, so dimH(S) = inf{m : Hm(S) = 0} ≤ d. �

The definition of correlation dimension as we will present it here requires
that the function x 7→ µ(Bδ(x)) is µ–integrable for all δ > 0 smaller than some
δ0, but in fact we have:

1Here, as well as in the following definitions of dimension, the definition is given under the
condition that a certain limit exists. One could also define the upper dimension using lim sup and
the lower dimension using lim inf instead of lim. The upper and lower dimensions will always exist
and when they are equal the limit in the dimension definition exists. The properties given in this
chapter for the different definitions of dimension also hold for the upper and lower dimensions.
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Proposition 2.2. If µ is a Borel probability measure on Rn, then x 7→ µ(Bδ(x)) is a
µ–integrable function for any δ > 0.

In appendix C we have proved a lemma (lemma C.1) saying that if µ is a
Borel measure on Rn, then all Borel sets in R2n are measurable for the product
measure µ × µ. Using this, the proposition follows from Tonelli’s theorem:

Proof of proposition 2.2. We begin by noting that µ(Bδ(x)) =
∫
χBδ(x) dµ. Let

f : Rn
× Rn

→ R be defined by f ((x, y)) = χBδ(x)(y). f is µ × µ–measurable
since

f ((x, y)) =

0 if |x − y| > δ
1 if |x − y| ≤ δ

and |x− y| > δ is an open set inR2n, so the inverse image of any set, in particular
a measurable set, is a Borel set and by lemma C.1 µ × µ–measurable. Then by
Tonelli’s theorem, y 7→ f (x, y) and x 7→

∫
f ((x, y)) dµ(y) are µ–measurable so∫

f ((x, y)) dµ(y) and
∫

(
∫

f (x, y) dµ(y)) dµ(x) are well defined and since µ(Rn) =
1, ∫ (∫

f (x, y) dµ(y)
)

dµ(x) ≤
∫ (∫

1 dµ(y)
)

dµ(x) ≤
∫

1 dµ(x) ≤ 1,

which means that x 7→
∫

f (x, y) dµ(y) = µ(Bδ(x)) is µ–integrable. �

Now we can define correlation dimension:

Definition 2.5 (Correlation dimension). For a Borel probability measure µ on Rn

we define

Ccorr(µ, δ) =

∫
µ(Bδ(x)) dµ(x).

The correlation dimension of µ is then

dimcorr(µ) = lim
δ→0

log Ccorr(µ, δ)
log δ

if the limit exists.

To get an interpretation of Ccorr(µ, δ), we note (as in [21]) that if X1 and X2
are random variables with probability distribution µ, and we let I(s) denote the
indicator function (i.e. I(s) is 1 if the statement s is true and 0 otherwise), then

µ(Bδ(x)) =

∫
I(|x1 − x| ≤ δ) dµ(x1) = Pr [|X1 − x| ≤ δ],∫

µ(Bδ(x)) dµ(x) =

∫
Pr [|X1 − x| ≤ δ] dµ(x) = Pr [|X1 − X2| ≤ δ] (2.2)

The second equation will become useful when estimating correlation dimen-
sion.

The definitions of Hausdorff and box-counting dimension can be used to
define dimension locally simply by considering subsets of the support of the
probability distribution.To do the same for correlation dimension, we need a
minor modification:
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Definition 2.6. For a Borel probability measure µ on Rn and a measurable subset
A ⊆ Rn we define the correlation dimension of µ in A as

dimcorr(µ,A) = lim
δ→0

log 1
µ(A) Ccorr(µ|A, δ)

log δ
,

where µ|A(E) = µ(E ∩ A) for all measurable subsets E ⊆ Rn.

We can also define the dimension at a point x, which will be referred to as
just the local dimension at x:

Definition 2.7. For a Borel probability measure µ onRn and a point x ∈ Rn we define
the local dimension of µ at x as

dimloc(µ, x) = lim
δ→0

logµ(Bδ(x))
log δ

if the limit exists.

The local dimensions in the points of a set bounds the Hausdorff dimension
and the box-counting dimension of the set; the following inequality is proved
in [41]:

Proposition 2.3. For a Borel measure µ on Rn without atoms2, and a measurable set
A ⊆ Rn with µ(A) > 0, if

c ≤ dimloc(µ, x) ≤ C, ∀x ∈ A

then c ≤ dimH(S),dimBC(S) ≤ C.

An immediate corollary of this proposition is that if dimloc(µ, x) = d for all x
in a set S, then dimH(S) = dimBC(S) = d.

For the relation between the local dimension in the points in a set and the
local correlation dimension of the set, we have at least the following:

Proposition 2.4. If A ⊆ Rn is measurable and dimloc(µ, x) = d for all x ∈ A, and if
there exist a C and a δ0 ∈ R such that∣∣∣∣∣∣ logµ(Bδ(x))

log δ
− d

∣∣∣∣∣∣ < C ∀δ < δ0, (2.3)

then dimcorr(µ,A) ≤ d. Furthermore, if

logµ(Bδ(x))
log δ

→ d

uniformly as δ→ 0, then dimcorr(µ,A) = d.

Proof. Assume that dimloc(µ, x) = d for all x in a measurable set A and that (2.3)
holds for some C, δ0 ∈ R. Let

εx(δ) =
logµ(Bδ(x))

log δ
− d. (2.4)

2A set E with µ(E) > 0 is an atom if ∀F ⊆ E, µ(F) = µ(E) or µ(F) = 0.
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Then εx(δ)→ 0 pointwise as δ→ 0 and |εx(δ)| < C if δ < δ0. Rewriting (2.4) we
get

µ(Bδ(x)) = δd+εx(δ)

which yields

log Ccorr(µ|A, δ) = d log δ + log
1

µ(A)

∫
A
δεx(δ) dµ(x). (2.5)

Now, since x 7→ log x is concave, Jensen’s inequality gives that

log
1

µ(A)

∫
A
δεx(δ) dµ(x) ≥

1
µ(A)

∫
A

log δεx(δ) dµ(x) = log δ
1

µ(A)

∫
εx(δ) dµ(x)

so if δ < 1,
log 1

µ(A) Ccorr(µ|A, δ)

log δ
≤ d +

1
µ(A)

∫
A
εx(δ) dµ(x).

Since |εx(δ)| < C,∀δ < δ0 and εx(δ) → 0 pointwise, the Lebesgue dominated
convergence theorem gives that

∫
A εx(δ)dµ→ 0 as δ→ 0. Thus

lim
δ→0

log 1
µ(A) Ccorr(µ|A, δ)

log δ
≤ d.

Now, if
logµ(Bδ(x))

log δ
→ d (2.6)

uniformly as δ → 0, then clearly (2.3) holds for some C, δ0 ∈ R, so it is enough
to prove that

lim
δ→0

log 1
µ(A) Ccorr(µ|A, δ)

log δ
≥ d.

In fact, it is enough that we find a function η such that η(δ)→ 0 as δ→ 0 and

log 1
µ(A)

∫
A δ

εx(δ) dµ(x)

log δ
≥ η(δ) (2.7)

since using (2.5) we have

log Ccorr(µ|A, δ)
log δ

≥ d + η(δ) =⇒ lim
δ→0

log Ccorr(µ|A, δ)
log δ

≥ d.

We note that (2.7) is equivalent with

1
µ(A)

∫
A
δεx(δ) dµ(x) ≤ δη(δ).

Uniform convergence in (2.6) means that εx(δ) → 0 uniformly in x as δ → 0.
With η(δ) = − supx∈A(|εx(δ)|), δη(δ)

≥ δεx(δ) for all x ∈ A, so

1
µ(A)

∫
A
δεx(δ) dµ(x) ≤

1
µ(A)

∫
A
δη(δ) dµ(x) ≤ δη(δ)

13



and since we have uniform convergence of εx(δ), η(δ)→ 0 as δ→ 0. Thus

lim
δ→0

log 1
µ(A) Ccorr(µ|A, δ)

log δ
≥ d.

�

In fact, Cutler [9] proves that if dimloc(µ, x) exists for almost every x in a set
S, then dimcorr(µ,S) ≤ dimH(S). Using proposition (2.3) this immediately gives
the first inequality in proposition (2.4).

Now we can prove

Proposition 2.5. Suppose that M is a d–manifold such that for each x ∈ M there
is a δx > 0 and a bi-Lipschitz function φx : Bδx (x) ∩ M → Bεx (φx(x)) ⊆ Rd, and
furthermore that there are constants C and c such that L(φx) < C and L(φ−1

x ) < c,
∀x ∈ M. We call such a manifold a uniform bi-Lipschitz manifold. If µ is a uniform
measure on a set A ⊆ M, then dimcorr(µ,A) = d.

Proof. By proposition 2.4 it is sufficient to prove that

logµ(Bδ(x))
log δ

→ d

uniformly for each x ∈ A as δ → 0. We use the fact that since µ is a uniform
measure on a d–manifold, µ(E) = K ·Hd(E) for all measurable E ⊆ M for some
constant K, where Hd is the d–dimensional Hausdorff measure [19]. Similarly
we have that with ν denoting Lebesgue measure on Rd, ν(E) = k · Hd(E) for all
measurable E ⊆ Rd for a constant k.

Now if f is a Lipschitz function with Lipschitz constant L( f ) = C, then

Hd
δ( f (U)) = inf

∑
i

diam(Vi)d :
⋃

i

Vi ⊇ f (U); Vi open, diam(Vi) < δ


≤ inf

∑
i

diam( f (Ui))d :
⋃

i

Ui ⊇ U; Ui open, diam(Ui) <
δ
C


≤ inf

∑
i

Cddiam(Ui)d :
⋃

i

Ui ⊇ U; Ui open, diam(Ui) <
δ
C


= Cd

·Hd
δ/C(U)

=⇒ Hd( f (U)) ≤ Cd
·Hd(U)

This gives us that

µ(Bδx (x)) = K ·Hd(Bδx (x)) = K ·Hd(φ−1
x (Bεx (φ−1

x (x)))) ≤ cd
·Hd(Bεx (φ−1

x (x)))

= kcd
· V(d) · εd

x ≤ kcd
· V(d) · (C · δx)d = C′ · δd

x ,

where V(d) is the volume of the d–dimensional unit ball. Analogously, µ(Bδx (x))
≥ c′δd for some constant c′ > 0, and uniform convergence follows immediately.

�
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2.3 Intrinsic Dimension Defined by the Curse of Di-
mensionality

The curse of dimensionality is a collection of phenomena that makes it hard
to do analyses of data sets with high intrinsic dimension [28]. One typical
example is that the distances between points gets more and more similar, i.e.
they concentrate around their mean, as the dimension increases. In normed
vector spaces we have that if the d components {x1, x2, . . . , xd} of a random vector
x are independent and identically distributed with E[x8

j ] < ∞, then

E[‖x‖] =

√
µ′2d −

µ′4 − µ
′

2

4µ2
+ O

(1
d

)
Var [‖x‖] =

µ′4 − µ
′

2

4µ2
+ O

(
1
√

d

)
where µ′k = E[xk

j]. Thus Var [‖x‖] /E[‖x‖] → 0 as d → ∞. An easy-to-follow
proof of this is given in [10].

This shows that when we can consider the difference between two ran-
dom points in a vector space as a vector with independent and identically
distributed components with finite eigth order moment, the variance of the
distance between the two points gets negligible in comparison to the mean as
the dimension increases. But in fact, the concentration of distances around the
mean holds in much more general circumstances, as we will see below.

Another problem in intrinsically high-dimensional spaces is that there is
a sparseness of points — they seem empty. For example if we have points
uniformly distributed over a ten-dimensional unit ball, and we want to cover
half of the points, we need a ball of radius 0.51/10

≈ 0.93.
The good thing is that since these phenomena depend on the dimension,

they can be exploited to construct definitions and/or estimators of intrinsic
dimensionality. One simple example is the intrinsic dimension definition for a
probability measure by Chávez et al which uses the distance D between two
points randomly drawn from the probability distribution corresponding to the
measure µ [6]. The definition is the following:

dimCh(µ) =
E[D]2

2 · Var [D]
.

It has been shown experimentally that with 3000 points, an estimator based
on dimCh yields a good agreement with d for gaussian distributions N(0, 1) ×
. . . ×N(0, 1) (d factors) for 1 ≤ d ≤ 50 [33].

Pestov [32] uses a more mathematical approach to construct a dimension
estimator based on the curse of dimensionality. He argues that the mathemat-
ical counterpart of the curse of dimensionality is the concentration phenomenon
in certain families of metric (Borel) measurable spaces (mm-spaces). These
families are called Lévy families and are sequences of mm-spaces {Xn} that of-
ten have increasing dimension in the usual sense. A formal definition of the
concentration phenomenon is

Definition 2.8. The concentration phenomenon applies to a family of mm-spaces
(Xn, ρn, µn) with µn(Xn) = 1, if whenever we have a family of subsets {An},An ⊆ Xn

15



such that µn(An) ≥ 1/2, then µn((An)ε)→ 1 for every ε > 0, where (An)ε = {x ∈ Xn :
infa∈An ρ(x, a) < ε}.

If we think of {µn} as a probability measure, this means that for any ε > 0,
the probability to draw a point from the corresponding probability distribution
that is further than ε from An will approach zero as n→∞.

The definition of a Lévy family is connected to the first property of high-
dimensional spaces that we stated, and it relates the observable diameter to the
characteristic size of the mm-spaces in the family.

Definition 2.9. The observable diameter of a mm-space (X, ρ, µ), ObsDiam(X), is the
infimal value of ε such that for any 1–Lipschitz function f : X→ R

Pr
[
| f (x) − f (y)| > ε

]
< κ, x, y ∼ µ

for some threshold value κ.

Definition 2.10. The characteristic size of a mm-space (X, ρ, µ), CharSize(X) is the
median value of distances between points in the space, i.e.

Pr
[
|x − y| ≥ CharSize(X)

]
= 1/2, x, y ∼ µ

if µ has no atoms.

Definition 2.11. A family of mm-spaces (Xn, ρn, µn) is a Lévy family if ObsDiam(Xn)
� CharSize(Xn) as n→∞.

The definition of a Lévy family says that not only for the norm, but for
every 1-Lipschitz function from X to R, the values of the function sharply
concentrate around their mean. Examples of Lévy families are {Sn

}, {Bn
} with

the Euclidean metric and the usual measures, and the Hamming cubes {{0, 1}n}
with normalized Hamming distance ρ(a1a2 . . . an, b1b2 . . . bn) = 1

n |{i : ai , bi}| and
the counting measure [19, 32].

The novel dimension estimator we will present in chapter 7 relies on the
fact that {(Sn, ρn, νn)} is a Lévy family, with ρn denoting Euclidean distance,
and νn the rotation-invariant measure. CharSize(Sn) →

√
2 as n → ∞ and

ObsDiam(Sn) = O(1/
√

n) [32]. We consider the 1–Lipschitz function pv : Xn →

R, which is projection onto a fixed vector v, e.g. (1, 0, 0, . . .). By lemma C.2 it
follows that E[|pv(x)|] → 0 for x ∼ νn as n → ∞ since by symmetry the median
of pv(x) with x ∼ νn is zero for any n, and supx∈Sn |pv(x)| = 2. The estimator
is constructed using the fact that we actually have an analytic expression for
E[|pv(x)|], x ∼ νn for each n.

Pestov on the other hand used a definition of dimension more closely con-
nected to the concentration phenomenon, based on the most common quanti-
tative measure of it, the concentration function.

Definition 2.12. For a mm-space X with µ(X) = 1, the concentration function αX is
defined for each ε > 0 by

αX(ε) = 1 − inf{µ(Aε) : A ⊆ X, µ(A) > 1/2} .

His definition of intrinsic dimension was

dimPe(X) =
1[

2
∫ 1

0 αX(ε) dε
]2

16



From the next theorem it follows that dimPe(Xn)→∞ if and only if {Xn}was
a Lévy family.

Theorem 2.1. αXn (ε)→ 0 as n→∞ for any ε > 0 if and only if {Xn} is a Lévy family.

Another advantage with Pestov’s approach is that it made no difference
between continuous and discrete sets, if ρGr(Xn,X) → 0 as n → ∞, then
dimPe(Xn) → dimPe(Xn), where ρGr is the Gromov distance [32]. Due to high
computational complexity though, dimPe, is not suitable for dimension estima-
tion.
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Chapter 3

PCA

The most widely known application of intrinsic dimension estimation and
dimension reduction is data compression. To compress an image, it is first
divided into N regions of a × a pixels. The N regions are samples from an
a2–dimensional space. When for example a discrete cosine transform (which is
used in jpeg compression) is applied to each sample, the samples are projected
onto a pre-determined linear subspace of the original a2–dimensional space.
The dimension of the linear subspace can be chosen so that the rate of compres-
sion is sufficiently large, or so that the projection error is sufficiently small, but
otherwise it is not adapted to the samples. When using principal components
analysis, PCA, on the other hand, the subspace is chosen in an optimal way —
it yields the minimum squared approximation error given the dimension.

The idea of PCA is straightforward: to project on a linear subspace such that
as much as possible of the variance1 is kept. Maximizing variance within the
subspace also means minimizing variance orthogonal to the subspace, so the
subspace given by PCA yields the minimal approximation error when points
are approximated by their projection onto a linear subspace of lower dimension.

PCA is inherently a linear technique, and can thus only find linear sub-
manifolds, however a local version of PCA can be used to make dimension
estimates, using the idea that a smooth d–manifold is locally well approxi-
mated by its tangent space. This was first done by Fukunaga and Olsen in 1971
[15].

The principal components constitute an orthonormal basis which defines
the linear subspace which is projected on for dimension reduction. Suppose
we have a data set {xi}

N
i=1 of points in Rp, arranged in a N × p matrix X. Using

the precept that variance in the projection on the principal components should
be maximal, the first principal component w1 ∈ Rp is a vector of unit length
such that Var [ Xw] is maximal. Using the notation X = [x x . . . x]T we have for
w ∈ Rp

Var [ Xw] = (Xw − Xw)T(Xw − Xw) = wT(X − X)T(X − X)w = wTΣw

where Σ = (X − X)T(X − X) is the covariance matrix2. Since Σ is a nor-
mal positive-semidefinite matrix, there is a unitary matrix U of eigenvectors

1With a slight abuse of notation, variance for a data set {xi} here means
∑

i(xi − x)2, keeping in
mind that variance for a random variable is defined as E[(X − E[X])2].

2with the covariance between two sets of data {ai}
N
i=1 and {b}Ni=1 meaning

∑N
i=1(ai − ā)(bi − b̄).
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u1,u2, . . . ,up to Σ, with corresponding non-negative eigenvalues σ2
1, σ

2
2, . . . , σ

2
p.

We can assume that σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. With D denoting the diagonal ma-
trix with σ1, σ2, . . . , σp on the diagonal, we have the factorization Σ = UD2UT.
Thus

Var [ Xw] = wTUDDUTw = |wTUD|2.

Let (w′)T = wTU and let w1, . . . ,wp denote the entries of w. With the
restriction |w| = 1, from

p∑
i=1

(w′i )
2 = |w′| = |w| = 1 and Var [ Xw] =

p∑
i=1

(w′iσi)2

it is easy to see that Var [ Xw] is maximal when w = u1, so we can choose
w1 = u1.

The second principal component w2 is defined to be a vector w ∈ Rp that
maximizes Var [ Xw] under the restrictions that w should be orthogonal to w1
and have unit length, the third is defined the same way except that it is required
to be orthogonal also to w2, and so on. Iterating the argument above we get
that wi = ui for i = 1, . . . , p is a possible choice for the principal components.

Now, dimension reduction to d dimensions can be obtained by centering
the data (i.e. subtracting the mean) and then projecting it onto the subspace
spanned by the d first principal components. This projection minimizes the
projection error ‖P(X − X) − (X − X)‖F among orthogonal projections P onto
d–dimensional subspaces, with ‖·‖F standing for Frobenius norm3. To see why,
with X̃ = X − X we have for any orthogonal projection P that

‖X̃‖2F = ‖X̃ − P(X̃)‖2F + ‖P(X̃)‖2F.

It is easy to see from the definition of the principal components that if we
are restricted to d dimensions in the projection, ‖P(X̃)‖2F is maximal when the
projection is onto the subspace spanned by the d first principal components.
Thus ‖X̃ − P(X̃)‖2F must be minimal for projection onto this subspace.

One of the main advantages of PCA is that the eigenvalues σ2
1, σ

2
2, . . . σ

2
p re-

flect how much of the variance is kept in the projection onto each principal
component, and thus also how much variance that is lost in the projection. If
some of the eigenvalues are zero, the data set lies in a linear subspace ofRp with
the dimension given by the number of non-zero eigenvalues. If the data lie close
to a linear subspace, but not quite, due to noise or a slight non-linearity, the
eigenvalues corresponding to principal components orthogonal to the linear
subspace will be small in comparison to eigenvalues corresponding to princi-
pal components within the linear subspace as long as the variance within the
linear subspace is big enough. This makes it possible to estimate the intrinsic
dimension for data on linear or almost-linear manifolds by comparing eigen-
values. However, the linear nature of PCA will make this method overestimate
dimension for curved manifolds. To avoid this, PCA can be done locally, using
only data points within a cut-off radius from a certain point.

3For a matrix A with row vectors a1, a2, . . . , aN the Frobenius norm is ‖A‖F =
∑N

i=1|ai|
2.
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Chapter 4

Correlation Dimension
Estimation

We saw in chapter 2 that the correlation dimension of a uniform measure on
a bi-Lipschitz manifold equals the topological dimension of the manifold. In
view of equation (2.2) this means that

Pr [|X1 − X2| ≤ δ] = δd+εcorr(δ),

where εcorr(δ) → 0 as δ → 0. However, this does not imply that δεcorr(δ) is
bounded. The estimators we present in this chapter will not work if this is the
case, therefore we will give some additional conditions under which we in fact
have

Pr [|X1 − X2| ≤ δ] = c · δd, ∀δ < δ0; X1,X2 ∼ µ (4.1)

Using a similar argument to one used in [30] we will show that (4.1) holds if the
probability measure corresponds to a uniformly continuous density function
and its support is a d–manifoldM for which we have an isometry φ : Rd

→M.
If this holds for a probability measure µ with probability density function

f , a random variable X distributed according to µ can be written as X = φ(Z),
where Z is a random variable on Rd with uniformly continuous probability
density function f̃ = f ◦ φ.

Now fix a point z ∈ Rd and assume that f̃ (z) is approximately constant in a
small ball of radius δ0 around z. If V(d) denotes the volume of the unit ball in
Rd, the volume of a ball inRd with radius r is V(d) ·rd; this leads to the powerlaw

Pr [|Z1 − z| < δ] ≈ f̃ (z)V(d)δd, Z1 ∼ ν

for δ < δ0. If we assume that f̃ is approximately constant in a ball of radius δ0
around z for any z ∈ supp(ν) (which we can do by uniform continuity), we get

Pr [|Z1 − Z2| < δ] =

∫
Pr [|Z1 − z| < δ] dν(z) ≈

∫
f̃ (z)V(d)δddν(z)

= V(d)δd
∫

f̃ (z)dν(z) = V(d)δd, ∀δ < δ0

If X1 = g(Z1) and X2 = g(Z2), then using isometry we get

Pr [|X1 − X2| < δ] = Pr [|Z1 − Z2| < δ] = V(d)δd, ∀δ < δ0,
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i.e. (4.1) holds.
Using (2.2) and (4.1) we can construct an estimator of correlation dimension

almost directly. For a sample {x1, . . . , xN}, Ccorr(µ, δ) in definition 2.5 can be
estimated by

C∗corr(µ, ε) =
2

N(N − 1)

N∑
i, j=1
i< j

I(|xi − x j| ≤ ε),

which is an unbiased estimate of the probability that the distance between two
samples drawn from µ is below or equal to δ.

However, the estimate is bad for low δ, due to the fact that there are finitely
many samples. Therefore one must assume that the error

ε∗corr(δ) = dimcorr(µ) −
C∗corr(µ, ε)

log δ
(4.2)

is small in a range of values of δ where the estimate C∗corr(µ, ε) is still reliable.
The most straightforward way to estimate the correlation dimension is then

to compute C∗corr(µ, ε) for δ = δ1, δ2, . . . , δN, and fit a line to a section of the plot
of

{(log δ1, log C∗corr(µ, δ1)), (log δ2, log C∗corr(µ, δ2)), . . . , (log δN, log C∗corr(µ, δN))}

where it is deemed that a linear relationship between log Ccorr(µ, δ) and log δ
holds. The slope of the line will be the dimension estimate.

This was the method used by Grassberger and Procaccia when they intro-
duced the concept of correlation dimension [18].

4.1 Takens’ Estimator

Takens’ estimator is the maximum likelihood estimator of d for the model (4.1)
with a predetermined δ0.

Given a sample {X1,X2, . . . ,XN} of N points with distribution µ, the estimate
is constructed as follows: Determine the distances between each pair of points
in the sample, |Xi −X j|with i , j. Let R1, . . . ,RM be an enumeration of those of
these distances that are smaller than δ0. The maximum likelihood estimate of d
is then

d∗T = −

 1
M

M∑
k=1

ln
Rk

δ0


−1

(4.3)

This might be a non-integer, and in the case that we know the dimension to be
an integer, the estimate is rounded to the closest integer. Takens determined
the standard error of the estimator to be 1/

√
M · 1/d under the assumption

that R1,R2, . . . ,RM are independent [40]. However, the Ri’s are obviously not
independent by way of their construction, so the variance is really higher. The
variance when this is taken into account is derived in [34]. One way to avoid
this higher variance is to use only a sample of all interpoint distances; this
bootstrap approach is discussed in [21].

Takens suggested making the maximum likelihood estimate for many val-
ues of δ0 to verify the powerlaw relationship (4.1). If the powerlaw relationship
doesn’t hold, Takens’ estimator will be biased, an expression for the bias in this
case is presented in [21].
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4.2 The Hill Estimator

The Hill estimator based on work by Hill in 1975 regarding inference in situa-
tions like (4.1) when the form of the probability distribution is only known (or
assumed) in a certain region [21, 25]. The approach is similar to that of Tak-
ens’ estimator, the difference being that instead of using a cutoff radius, the M
shortest distances between points in the sample are used, for some heuristically
chosen M. Let R(1),R(2), . . .R(M) be the M shortest distances between pairs of
points in the sample, in order of length, R(1) being the shortest. The mathematics
involved is more complicated than for Takens’ approach, since it is necessary to
compute the joint probability distribution of R(1),R(2), . . .R(M−1) conditioned on
that R(M) = r(M), where r(M) is the observed value of R(M). However the resulting
estimator is very similar to Takens’ estimator, being

d∗H = −

 1
M − 1

M−1∑
k=1

ln
R(k)

R(M)


−1

(4.4)

The estimator is biased,

E[d∗H] =
M − 1
M − 2

· d

if (4.1) holds, so by dividing by M− 2 instead of M− 1 in (4.4) the estimator will
be unbiased if the powerlaw (4.1) holds. As for Takens’ estimator, other cases
are discussed in [21]. The variance of the estimator is

V[d∗H] =
(M − 1

M − 2

)2

·
d2

M − 3

if (4.1) holds and R(1),R(2), . . .R(M) are independent. Since as before they are not
independent the variance is really higher, but it can be reduced by bootstrap
procedures, see [21].
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Chapter 5

Vector Quantization

Vector quantization is a way to approximate a probability distribution µ in RD

with a fixed number of points, prototypes, inRD. The result is a quantizer, Q, that
for each x ∈ RD assigns a prototype. The minimal error of a quantizer depends
on the number of prototypes but also on the dimension of the probability
distribution. If the support of µ is compact, the quantization dimension of order
r for 1 ≤ r ≤ +∞ can be defined, a concept introduced by Zador in 1982 [42].
The Hausdorff dimension of supp(µ) is smaller or equal to the quantization
dimension of any order [16], and we will see that for r = ∞ the quantization
dimension equals the box-counting dimension.

For 1 ≤ r ≤ ∞, the error of order r of the quantizer Q is defined as er(Q|µ) =
E[‖X − Q(X)‖r]1/r, where X is distributed according to µ. The error of infinite
order is defined as e∞(Q|µ) = sup{‖x − Q(x)‖ : x ∈ supp(µ)}. Let Qk denote the
set of all quantizers using k prototypes. The minimal error for k prototypes is
then e∗r(k|µ) = inf{er(Q|µ) : Q ∈ Qk}. Now we are ready for the definition:

Definition 5.1 (Quantization dimension). The quantization dimension of order r
of the probability measure µ is

dim(r)
quant(µ) = − lim

k→∞

log k
log e∗r(k|µ)

if the limit exists1.

Proposition 5.1. In the limit r = ∞, the quantization dimension equals the box-
counting dimension.

Proof. To simplify notation, let N(ε) := Nε(supp(µ)). First note that e∗∞(k|µ)→ 0
as k→∞ since supp(µ) is compact. Thus we can define a sequence {n j} j∈N ⊆N
by letting n1 = 1 and then choosing n j+1 as the smallest number such that
n j+1 > n j and e∗∞(n j+1|µ) < e∗∞(n j|µ). Then n j = N(e∗r(n j)), so

dim(∞)
quant(µ) = − lim

j→∞

log n j

log e∗∞(n j|µ)
= − lim

j→∞

log N(e∗∞(n j|µ))
log e∗∞(n j|µ)

= dimBC(supp(µ))

�
1see footnote 1 in chapter 2
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For a certain amount of regularity of µ, the quantization dimension will also
equal the Hausdorff dimension and the correlation dimension.

Definition 5.2. A measure µ is regular of dimension d if it has compact support
and there exists constants c and δ0 such that

1
c
δd
≤ µ(Bδ(x)) ≤ cδd

∀δ < δ0,∀x ∈ supp(µ).

It has been shown [16, 42] that if µ is regular of dimension d, the minimal
error for k prototypes, e∗r(k|µ), asymptotically complies with e∗r(k|µ) = Θ(k−1/d)2

Then it follows that µ has quantization dimension d.
That a probability distribution is regular of dimension d for some d is a rather

strong condition, and if µ is regular of dimension d its support has Hausdorff
dimension d (see [16]) and it can easily be proven that its correlation dimension
is d.

To estimate the quantization dimension from a collection of samples, an
approximation of the optimal quantizer is built from a subset of the samples,
the training set. Then the minimal quantization error is estimated as the quan-
tization error when this empirically optimal quantizer is applied to the rest of
the samples, the test set. As is the case for estimating correlation dimension it is
not possible to go in the limit since the approximation gets worse as k increases.
Thus the minimal quantization error is estimated for a range of values of k, and
the resulting quantization dimension is plotted as a function of k. Based on a
heuristic argument, it is stated in [35] that the first minimum in this graph is a
good estimate of the dimension.

An interesting feature of the vector quantization method is that there is a
theoretical bound for the errors in dimension estimates due to noise, see [35].

2
∃ c1, c2 such that c1 · k−1/d

≤ e∗r(k|µ) ≤ c2 · k−1/d when k is big enough.
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Chapter 6

k–NN Dimension Estimation

The method presented here using the k–NN (k nearest neighbors) graph was
developed by Costa and Hero in 2004 [7, 8], and has been improved and applied
in subsequent papers by Carter, Raich and Hero [4, 5]. Following a brief outline
of the method we will give the mathematical background and thereafter we will
present an algorithm which is a somewhat simplified version of the algorithm
presented in [5].

The directed k–NN graph for a set of points in Rm is the directed and
weighted graph where the nodes are the points of the set and from each point
there are edges going to the k points closest to it in Rm. The weights of the
edges are the distances between the points (according to some metric).

If we build a directed k–NN graph from n points that are distributed on a d–
manifold inRm, under some additional conditions that we will describe below,
the γ–power sum (γ > 0) of all the weights in the graph will asymptotically
equal n1− γd · c as n→∞, where c is a constant depending only on the probability
measure. We call this γ–power sum the γ–weighted total length of the directed
k–NN graph.

Through bootstrapping, subsamples from an original data set can be con-
structed, which will give us samples of varying sizes for which the γ–weighted
total length of the respective directed k–NN graphs can be computed; then
using a least squares approach d can be estimated.

6.1 Mathematical Background

Suppose that Xn = {X1,X2, . . . ,Xn} are n points in Rd distributed according to
a probability measure that is absolutely continuous with respect to Lebesgue
measure on Rd and is supported in a compact set. LetN k

Xn
be the function that

to each point in Xn assigns the set of its k nearest neighbors in Xn, i.e. N k
Xn

(Xi)
is the set consisting of the k points in Xn\{Xi} closest to Xi. The γ–power sum
of edges in the directed k–NN graph of Xn is then

Lk
Rd (Xn) =

n∑
i=1

∑
j∈Nk

Xn
(Xi)

dRd (Xi,X j)γ =

n∑
i=1

∑
j∈Nk

Xn
(Xi)

|Xi − X j|
γ. (6.1)
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Let α = 1 − γ
d . By the Beardwood-Halton-Hammersley theorem [2, 7],

Lk
Rd (Xn) = nα · c + o(nα).

Now, suppose that we have n points Yn = {Y1,Y2, . . . ,Yn} distributed ac-
cording to a probability measure µ that is supported on a compact subset of
a d–manifold M ⊆ Rm, such that there is an isometry φ : M → Rd so that
µ induced on Rd by φ is absolutely continuous with respect to the Lebesgue
measure. Now isometry implies that

dM(Yi,Y j) = |φ(Yi) − φ(Y j)|,

where dM denotes geodesic distance onM; thus Lk
M

(Yn) = Lk
Rd (φ(Yn)). Since

φ(Yn) is a set of n points in Rd distributed according to a probability measure
that is absolutely continuous with respect to Lebesgue measure onRd, we have

Lk
M

(Yn) = Lk
Rd (φ(Yn)) = nα · c + o(nα).

However, if two points are close to each other on M, the geodesic distance
is well approximated by the Euclidean distance in Rm. Assuming that the k
nearest neighbors for any point are so close so that Euclidean distance is a good
approximation, we get Lk

Rm (Yn) ≈ Lk
M

(Yn) and accordingly

Lk
Rm (Yn) ≈ nα · c + o(nα).

The restriction that there should exist an isometry φ : M → Rd is rather
severe, for most manifolds e.g. the sphere, this is not true. However, when the
curvature of a manifold is mild there are diffeomorphisms φ : M→ Rd that are
close to isometries, i.e. they don’t distort distances too much. When looking at
a smooth manifold at an increasingly local scale the curvature decreases, this
meaning that it is possible to find local near-isometries. With dense enough
sampling the k nearest neighbors will fall within a region for which there is a
local near-isometry to Rd, which makes the above theory applicable.

6.2 Algorithm

The algorithm given here which is also utilized in chapter 8 is a simplified
version of the algorithm presented by Carter et al. in [5], the difference being
that Carter et al. used a block bootstrapping method to get subsamples, in order
to account for possible data dependencies.

We are given a sample {x1, x2, . . . , xN} of N data points in Rm. Choose the
number of neighbors in the k–NN graph, k, and the weighting constant γ as
parameters. Since the distance from a point to any of its k nearest neighbors
should be a good approximation of the geodesic distances between the points
we restrict k to small values (k ≤ 5). Then choose a sequence of subsample
sizes {ni}

P
i=1 (where obviously k < ni ≤ N) and a number M giving how many

subsamples that should be drawn for each subsample size.
Now for each ni, draw M subsamples {X( j)

ni
}
M
j=1 from {x1, x2, . . . , xN}. For

each subsample construct the k–NN graph and compute the γ–weighted total
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length Lk
Rm (X( j)

ni
) by equation 6.1. Using a least squares approach, the dimension

estimate is defined to be the value of d that minimizes the residual

P∑
i=1

M∑
j=1

|Lk
Rm (X( j)

ni
) − c · n1− γd

i |
2. (6.2)

c is not given, but with d fixed it is easy to see that the value of c that minimizes
6.2 is

ĉ =

 P∑
i=1

M∑
j=1

n1− γd
i Lk

Rm (X( j)
ni

)


/
M

P∑
i=1

(n1− γd
i )2 .

Thus for every possible value of d, (1 ≤ d ≤ m) we can determine ĉ and compute

P∑
i=1

M∑
j=1

|Lk
Rm (X( j)

ni
) − ĉ · n1− γd

i |
2 (6.3)

The value of d which minimizes the residual 6.3 is the intrinsic dimension
estimate.
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Chapter 7

A Novel Approach: Expected
Absolute Projection

One of the cornerstones in the theory of normed linear spaces is the triangle
inequality,

‖x + y‖ ≤ ‖x‖ + ‖y‖. (7.1)

A remarkable fact shown in [14] is that for every finite dimensional normed
linear vector space X there is a reversed version of (7.1), namely there is a
constant C ∈ R such that for any finite subset {x1, x2, . . . , xN} ⊆ X

N∑
i=1

‖xi‖ ≤ C ·max
J⊆{1,2,...N}

‖

∑
i∈J

xi‖. (7.2)

Moreover, the value of the smallest possible constant C depends on the di-
mension of X, hence this allows for an approach to dimension estimation. We
will see later that this constant can also be obtained as an expected absolute
projection if X = Rn with Euclidean norm.

There are two major concerns that have to be addressed when adapting this
approach: First, we are trying to accomplish dimension estimation for non-
linear manifolds, for linear subspaces we already have an optimal approach:
PCA. This means that X will not be a normed linear vector space. The remedy
is the same as for PCA: to do dimension estimation locally so that the support
of the probability measure will be almost linear. If the curvature is not too
high it is conceivable that dimension estimation using (7.2) still works, but it is
essential to investigate how curvature affects the dimension estimates.

Second, there will be only a finite number of samples from X; had we
assumed X was linear this would have been much less of a problem since with
centered data linear combinations of samples still would have been in X. With
X being non-linear one has to be cautious when using linear combinations of
samples, and this restricts severely what subsets of X we have access to. This
might lead us to think that the smallest possible C in (7.2) is smaller than it
actually is, since we don’t find the worst-case sets.

We have addressed the above issues heuristically, with results presented
in chapter 8. In this chapter we will describe how to construct estimators of
intrinsic dimension based on the triangle inequality.
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7.1 Background

For normed linear spaces X, we define

CX = sup
T⊆X, |T|<+∞

{ ∑
x∈T‖x‖

maxS⊆T‖
∑

x∈S x‖

}
.

This smallest possible constant in the reversed triangle inequality is finite if
and only if X has finite dimension [14]. In particular, when X = Rn and with
Euclidean norm, CX is the quotient between the area of the unit sphere in Rn

and the volume of the unit ball in Rn−1, as we shall see. An alternate way to
write the denominator is given by the identity,

max
S⊆T
‖

∑
x∈S

x‖ = max
α∈X
‖α‖=1

∑
x∈T

(x, α)+, (7.3)

where (·, ·) is the scalar product and (a, b)+ = max(0, (a, b)). For a proof of this
identity, see section 7.3.1. We define

CX(T) =

∑
x∈T‖x‖

maxS⊆T‖
∑

x∈S x‖
. (7.4)

With Sn−1 = {x ∈ Rn : ‖x‖ = 1} denoting the unit sphere in Rn, using (7.3) and
the mean value theorem we have that

CX(T) ≤
∑

x∈T‖x‖
1

µ(Sn−1)

∫
α∈Sn−1

∑
x∈T(x, α)+ dµ(α)

,

with µ denoting the usual surface measure on Sn−1. Due to symmetry we have∫
α∈Sn−1

∑
x∈T

(x, α)+ dµ(α) =
∑
x∈T

‖x‖
∫
α∈Sn−1

(v, α)+ dµ(α),

where v ∈ Rn is an arbitrary vector of length 1. Thus

CX(T) ≤
(

1
µ(Sn−1)

∫
α∈Sn−1

(v, α)+ dµ(α)
)−1

.

Now let {TN}N∈N be a family of sets of points on the unit sphere such that TN is
asymptotically evenly distributed over the unit sphere. By this we mean that
limN→∞

1
N

∑
x∈TN

(x, α)+ is independent of α ∈ Sn−1. Then we have that

lim
N→∞

1
N

max
α∈Sn−1

∑
x∈TN

(x, α)+ =
1

µ(Sn−1)

∫
α∈Sn−1

lim
N→∞

1
N

∑
x∈TN

(x, α)+ dµ(α)

=
1

µ(Sn−1)

∫
α∈Sn−1

(v, α)+ dµ(α)

Thus

CX = sup
T⊆X
|T|<∞

CX(T) =

(
1

µ(Sn−1)

∫
α∈Sn−1

(v, α)+ dµ(α)
)−1

. (7.5)

29



In section 7.3.2 we use (7.5) to determine the value of CX for X = Rn,
but (7.5) can also be used to construct an estimate of C−1

X for the linear (or
almost linear) subspace of smallest dimension a data set lies in. To see this,
suppose that A1 is a random variable with uniform distribution over Sn−1.
Then E[(v,A1)+] = C−1

X . Furthermore, since this is not dependent on v, if A2 is
a random variable independent from A1 with uniform distribution over Sn−1,
then E[(A1,A2)+] = C−1

X .
From this we also see that C−1

X = 1
2 E[|(A1,A2)|], hence the name expected

absolute projection.
If we assume that data are distributed uniformly over a ball of dimension d

(this can be data cut out from a data set with uniform distribution of dimension
d) we can model the data as observations of a number of independent identically
distributed random vectors {x0 + Vi}

N
i=1, where x0 is the center of the ball and

Vi = Ri ·Ai with Ri being a scalar uniformly distributed over [0, 1] and Ai having
uniform distribution over the unit sphere and Ri is independent from Ai. Then

E[(Vi,V j)+] = E[RiR j] E[(Ai,A j)+] = E[RiR j] C−1
X

= E[|Vi||V j|]C−1
X

⇒ C−1
X =

E[(Vi,V j)+]
E[|Vi||V j|]

(7.6)

Thus an estimate of CX can be done by bootstrapping pairs from a data
set and compute the empirical version of (7.6). However, this results in high
variance for moderately sized data sets, and therefore this is not the approach
we have adopted. Instead we try to construct subsets T ∈ X such that CX(T) is
close to CX and thus can be used to estimate dimension.

7.2 Methods

As proved in section 7.3.2, for X = Rn, CX equals the quotient between the area
unit sphere in Rn and the area of its projection onto Rn−1. An explicit formula
for CX is given by

CX = n
√
π

Γ(1/2 + n/2)
Γ(1 + n/2)

, (7.7)

and the values of CX for n up to 15 is given in table 7.1.

n CX

1 2
2 π
3 4
4 3π

2 ≈ 4.7
5 16

3 ≈ 5.3

n CX

6 ≈ 5.9
7 6.4
8 ≈ 6.8
9 ≈ 7.3

10 ≈ 7.7

n CX

11 ≈ 8.1
12 ≈ 8.5
13 ≈ 8.9
14 ≈ 9.2
15 ≈ 9.5

Table 7.1: Values of CX for X = Rn.

We have constructed an estimator of dimension that tries to compute CX for
the linear or almost linear subspace of smallest dimension that the data lie in.
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Then using the formula (7.7) the dimension estimate is found. The dimension
estimate n is the smallest integer such that CX(T) ≤ CRn , where T is a finite set of
vectors constructed from our data. There are many ways to choose T, if a large
number of various linear combinations of elements in the data are used it seems
reasonable that we will get a CX(T) corresponding to the extrinsic dimension
of the data. To get an estimate of the intrinsic dimension we can only use few
linear combinations. We have considered four options:

1. T consists of all vectors that go from one point in the data set to another.

2. T consists of a subset of the vectors in 1.

3. T consists of the vectors going from the mass center of the data set to
the points of the data set, as well as the vectors going in the opposite
direction.

4. T consists of the same vectors as in 3., but the midpoints for each pair
of points in the data set are added to the data set. There is an option of
giving the added points lower weight simply by multiplying the vectors
corresponding to these by a scale factor.

To compute CX(T) we need to find maxS⊆T‖
∑

x∈S x‖. It is not feasible to try
all 2|T| possibilities for S if T is not very small, so we use the identity (7.3) and
search for the maximal projection on vectors of unit length. The sum of the
projections of vectors in T onto another vector is differentiable function with
respect to the coordinates of the vector, so we can use standard optimization
procedures. It should be noted though that the maximal sum of projections
gets harder to find as dimension increases.

If PCA is used on T, the first principal component u1 will have the prop-
erty that

∑
x∈T |(x,u1)|2 = maxα∈X,‖α‖=1

∑
x∈T |(x, α)|2, but this does not imply that∑

x∈T |(x,u1)| = maxα∈X,‖α‖=1
∑

x∈T |(x, α)|. However, Jensen’s inequality says that∑
x∈T

|(x, α)| ≤
√
|T|

√∑
x∈T

|(x, α)|2.

This could in principle be used to estimate CX when T = −T, since∑
x∈T

‖x‖ ≤ CX max
S⊆T
‖

∑
x∈S

x‖ =
CX

2
max

α∈X,‖α‖=1

∑
x∈T

|(x, α)|

≤
CX
√
|T|

2
max

α∈X,‖α‖=1

√∑
x∈T

|(x, α)|2

=
CX
√
|T|

2

√∑
x∈T

|(x,u1)|2

but the inequality turns out to be too weak.

7.3 Proofs

7.3.1 Proof of the identity (7.3).

Proposition. maxS⊆T‖
∑

x∈S x‖ = max α∈X
‖α‖=1

∑
x∈T(x, α)+.
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Proof. ≤ : For S ⊆ T define αS =
∑

x∈S x/‖
∑

x∈S x‖. Then

‖

∑
x∈S

x‖ =

∑
x∈S

x, αS

 =
∑
x∈S

(x, αS) ≤
∑
x∈T

(x, αS)+.

≥ : For α ∈ X with ‖α‖ = 1 and a given T, define Sα = {x ∈ T : (x, α) ≥ 0}.
Then

∑
x∈T

(x, α)+ =
∑
x∈Sα

(x, α) =

∑
x∈Sα

x, α

 ≤ ‖∑
x∈Sα

x‖.

�

7.3.2 Determining CX for X = Rn with Euclidean norm

We consider X = Rn with Euclidean norm. From (7.5) we have that

CX =

(
1

µ(Sn−1)

∫
α∈Sn−1

(v, α)+ dµ(α)
)−1

,

where v is a vector of unit length and Sn−1 is the (n − 1)–sphere. Let πv denote
hyper plane of dimension n− 1 with v as its normal. Let Sn−1

+ denote the part of
the unit sphere which is on the same side of πv as v. Then

CX =

(
1

µ(Sn−1)

∫
α∈Sn−1

+

(v, α) dµ(α)
)−1

.

Now fix α ∈ Sn−1
+ , α , v. Let πα denote the hyper plane of dimension n − 1

which has α as its normal. Note that (v, α) is the length of the projection of α
onto v. We will show that (v, α) also equals the area scale factor for projection
of an area element in πα onto πv.

πα

πv

π⊥

π||

v
α

Figure 7.1: Projection of Sn−1
+ onto

π||.

Denote the plane spanned by v and
α by π||. The intersection between πv
and πα is orthogonal to π||, denote this
(n − 2)–dimensional hyper plane by π⊥.
We construct an orthonormal basis for πα,
{a1, a2, . . . an−1}, such that a1 lies in π|| and
a2, . . . , an−1 are parallel to π⊥. What hap-
pens when an area element da1da2 . . . dan−1

in πα is projected onto πv? Before projection the area is |da1da2 . . . dan−1| =
|da1||da2| . . . |dan−1|. Denote the projection of ai onto πv by âi. Since a2, . . . , an−1
are parallel to π⊥, which is a subset of πv, ai = âi for i = 2, . . . ,n − 1. â1 will
be orthogonal to â2, . . . , ân−1, since â1 is in π||. Moreover, |dâ1| = (v, α)|da1| by
similarity, see figure 7.3.2. Thus

|dâ1dâ2 . . . dân−1| = |dâ1||dâ2| . . . |dân−1| = (v, α)|da1da2 . . . dan−1|,

i.e. (v, α) is the area scale factor when projecting πα on πv. Thus

C−1
X =

1
µ(Sn−1)

∫
α∈Sn−1

+

(v, α) dµ(α) =
1

µ(Sn−1)
µ(Bn−1)
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where Bn−1 is the unit ball in Rn−1, which can be embedded in Rn as the
projection of Sn−1

+ on πv.
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Chapter 8

Method Comparisons: Local
Dimension Estimation

When we find data lying on a manifold with lower dimension than the ex-
trinsic dimension, there are continuous functional relationships between the
variables. If the functions describing these relations are non-linear, the mani-
folds will be non-linear. However, for example in gene expression data, it is
likely that we have continuous functional relations between variables that are
not globally valid; there might be groups of samples with different functional
relations. This means that the support of the data is a union of manifolds,
possibly with different dimension. Another type of data where this is the
case is images. Regions with high complexity have high intrinsic dimension,
and regions with low complexity have low intrinsic dimension; this has been
exploited to segment out regions of different complexity [5].

Motivated by this we will apply the dimension estimators presented in ear-
lier chapters to local dimension estimation problems. Local PCA and the EAP
estimator are naturally estimators of local dimension, but the other methods
estimate more naturally global dimension. Most global dimension estimators
can perform local dimension estimation by considering subsets of data, the
single requirement is that the dimension estimator must be applicable to data
sets with relatively few points. This does not mean that the estimator should
be able to estimate dimension of manifolds which are very sparsely sampled
in relation to their curvature, this is of course impossible, but it means that
when the curvature is low it should suffice with a small number of points to
do dimension estimation. This rules out vector quantization as a method for
local dimension estimation, since already for a few hundreds of points sampled
from a flat manifold its performance is poor, see appendix A.

On the other hand, local dimension estimators can always be used to esti-
mate global dimension by averaging over the local estimates.

A caveat to local dimension estimation of manifolds with high-dimensional
noise is that if we use a subset with little expansion we get the dimension of
the noise. This is especially a problem if we fix the number of points we use for
local dimension estimation, as can be seen in figure 8.1. Therefore when using
a fixed number of points for the subsets used for local dimension estimation,
one has to estimate the average diameter of these subsets and make sure that it
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(c) Enlargement

Figure 8.1: Samples from the distribution N(0, 0.3) ×U(0, 10), with a point and
its six nearest neighbors marked.

is large enough in comparison to the standard deviation of the noise.
We have considered manifolds which have very low intrinsic dimension

(≤ 15) compared to the extrinsic dimension (i.e. the number of variables) of
typical genomics data (≥ 10000). However, the intrinsic dimension must be
smaller than the number of data points, which are considerably fewer than
the number of variables. Furthermore, principal components analyses often
show that most of the variance in gene expression data can be explained by a
handful principal components (see e.g. [36]), indicating that a model where the
data lie close to a manifold with a dimension at least less than one hundred is
reasonable.

The extrinsic dimensions of the manifolds we have considered here are also
low, since with higher extrinsic dimension the computational cost increases.
The investigation should be considered as an attempt to characterize the di-
mension estimators as to guide further research.

8.1 Simulated data sets

We use six categories of synthetic data sets to test the dimension estimators.
Each test set is designed so that it is the restriction of samples uniformly dis-
tributed over a manifold (with noise added in one case) to a neighborhood of
a point on the manifold; in some cases this point is one of the samples. The
manifolds behind each of the data set categories are: 1)Rn with n ranging from
3 to 10. 2) The 5–sphere. 3) The n–sphere with n = 2, 4, 6, 8. 4) The faces of
the n + 1–dimensional hypercube with n = 2, 4, 6, 8. 5) “Edges” of dimension 2
to 9 of the 10–dimensional hypercube. 6) R5. For the data sets in category 6),
normal noise of varying dimension is added.

In category 1), which is only used to test the EAP estimator, we vary the
number of samples in the neighborhood between 25 and 70. Otherwise we use
always about 50 samples, in fact exactly 50 samples except in category 2). The
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reason that the number of samples in the neighborhood in category 2) is not
fixed, is that we fix the number of samples over the whole 5–sphere and we
use a cut-off radius r to determine the neighborhood (i.e. all points closer than
r to the top of the sphere are inside the neighborhood). The number of samples
over the 5–sphere is determined so that approximately 50 points fall within the
cut-off radius. In category 3) and 4) we also fix the total number of samples
over the manifold, but the neighborhood is chosen as a randomly selected point
and its 49 nearest neighbors.

In each category of data sets we vary one or two features, e.g. dimension,
and for each value we have simulated 100 data sets for which we have carried
out dimension estimation.

The details and the results are presented in sections 8.3–8.7. We will first
give some details on the implementation of the dimension estimators.

8.2 Parameter and Design Choices

There are no clear-cut ways to define which parameter values are optimal. In
general we will have a tradeoff between bias and variance, one evident example
of this is shown in appendix B, where we have used Takens’ estimator with
different values for the cut-off radius to estimate the dimension of the data sets
in category 2), which is also estimated in figure 8.3. We have strived to balance
bias and variance in our choice of parameters, but we do not argue that our
results are optimal.

Local PCA

When we use PCA for dimension estimation, the estimate is taken to be the
number of eigenvalues of the covariance matrix that are at least 5% of the
biggest eigenvalue; this is a common tolerance level [3, 15]. We can apply PCA
directly on the test data sets to get local PCA by way of construction of the data
sets, however for the problems we consider here we can produce better results
with PCA if fewer points are used for the local estimates. Thus we have made
local PCA dimension estimates for each point in the data set based on its k = 10
or 20 nearest neighbors and then taken the median of the dimension estimates
to be the dimension estimate for the data set. In figure 8.3 we show results
both for PCA applied the whole data set and for the median of the local PCA
estimates in each point (PCAloc).

Takens’ and the Hill Estimator

For the Hill estimator we need to decide how many interpoint distances k to
use (M in (4.4)), and for Takens’ estimator we need to decide the cut-off radius
r (δ0 in (4.3)). The fewer interpoint distances we use, the better the Euclidean
distances approximate the true geodesic distances, but when we use fewer
distances we get higher variance. We have chosen k = 50 for the Hill estimator
so that on average one distance per point is used (the distance to the nearest
neighbor). For Takens’ estimator we have chosen r = µ1 + σ1 where µ1 is the
average distance to the nearest neighbor for the points and σ1 is the standard
deviation of this distance.
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We have used the unbiased version of (4.4) for the Hill estimator.
There is also the possibility of using intrinsically local versions of Takens’

and the Hill estimator, that is maximum likelihood estimates of the local di-
mension dimloc as defined in definition 2.7.This approach is utilized in [30] and
[5], but in our tests this approach proved to be suboptimal, even if we take the
median of dimension estimates of subsets of the data set as for local PCA.

k–NN estimator

For the k–NN estimator we have four parameters to set: the number of neigh-
bors in the k–NN graph, k; the weighting constant γ; the sample sizes ni; and
the number of bootstrapped samples N. We have throughout all simulations
chosen N = 10. As for choosing k we have the same considerations of how well
the nearest neighbor distances approximate the geodesic distances as for the
Hill and Takens’ estimator, but here the effect of choosing large k will be more
severe since we will consider the k nearest neighbors in a subsample of the set
for which we make the dimension estimation. This also means that the sample
sizes have to be large enough so that the k:th nearest neighbor is not too far
away. For the dimension estimations presented here we have chosen k = 2, and
n1 = dK/2e, n2 = dK/2e + 3, . . . , K − 4, K − 1, where K is the number of points in
the subset where we make the local dimension estimation (usually K = 50). γ
is chosen to be 1, since we have not detected much difference of the dimension
estimates when γ is varied.

EAP Dimension Estimator

For the EAP dimension estimator we need to decide upon a method to construct
the set T. To get the results presented here we have let T be the set of all vectors
between points in the data set, the reason for this is discussed in the next section.
Apart from this there are no parameters to set, disregarding that there are many
ways to do the maximization

max
α∈X
‖α‖=1

∑
x∈T

(x, α)+ .

How we have chosen to do this is discussed in appendix B.

8.3 EAP Dimension Estimator: Initial Tests

We begin with investigating the fundamental properties of the EAP dimen-
sion estimator: how well does it estimate dimension of data sets from “ideal”
probability measures? The “ideal” probability measures are the uniform ones,
since we saw in section 7.1 that data evenly distributed over a sphere yields
the maximal value for CX(T). It follows that this is also the case for data evenly
distributed over a ball, and local dimension estimation means estimating the
dimension of the probability measure restricted to a ball.

We have sampled data sets of varying size from the uniform distribution
over the unit ball inRn with n ranging from 3 to 10, and applied various versions
of the EAP dimension estimator. The version with the best results (with the
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least bias), which still is reasonably fast, is the one where we let T consist of all
vectors that go from one point in the data set to another. The results for this
version are displayed in figure 8.2. We could achieve somewhat better results
by instead letting an algorithm choose a subset of these vectors in order to
maximize CX(T) but this approach is very computationally intensive and has
therefore not been tested extensively.
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Figure 8.2: Results of the EAP dimension estimator using all vectors between points in the data set, applied
to uniformly sampled balls with K samples and varying dimension. The bars in each cell show the proportion of
the data sets for which a certain dimension estimate was yielded.

We see that the EAP dimension estimator systematically underestimates
dimension. This is not surprising since with a finite number of samples we
cannot expect to get the worst constant in the reversed triangle inequality. It
is more surprising that adding convex combinations of data points does not
increase the values of the dimension estimates. In appendix B the correspond-
ing plot to figure 8.2 is presented when we use the vectors to the center of the
ball from the data points and the midpoints between each pair of data points,
with the midpoints given lower weight so that the influence of all the midpoint
vectors equal that of the original data point vectors. The dimension estimates
are in general lower, this is probably due to the fact that we introduce more
data dependencies when adding midpoints.

8.4 Curvature

Now we will compare the EAP dimension estimator with the four other meth-
ods of local dimension estimation: Local PCA, Takens’ estimator, the Hill esti-
mator and the k–NN estimator. First we investigate the effect of curvature on
the dimension estimators; in view of the theory presented in earlier chapters
this an essential test, since with curved d–manifolds we do not have isometric
embeddings to Rd.
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Strictly, it is not the curvature itself that has an adverse effect on dimension
estimators, since the data can be scaled so that the curvature changes without
changing the dimension estimates. What affects the dimension estimates is the
total amount of bending that appears in a data set, i.e. the largest angle between
tangent spaces (or normals to tangent spaces) for points in the data set.

We have applied the dimension estimators to uniform probability distribu-
tions over top segments of 5–spheres. Specifically, we have a number of data
sets each of which consists of approximately 50 points, these points are the
points within a certain cut-off radius r from the top of the sphere. The total
number of samples on the sphere, M, varies so that the data sets cover different
proportions of the sphere. To characterize the total amount of bending in the
data set we define θ to be the angle between the tangent plane on the top of
the sphere and the tangent plane at distance r from the top. θ can be computed
from

θ = arccos(1 −
r2

2R2 ),

where R is the radius of the sphere. The results are presented in figure 8.3,
where we also see how the dimension estimators perform when there is zero
curvature (the manifold is a unit ball of dimension 5).
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Figure 8.3: Dimension estimation results for sphere segments with K ≈ 50 points. Parameters: Local PCA:
k = 10; Takens’ estimator: r = µ1 + σ1; Hill: k = 50; k–NN: k = 2, γ = 1, 10 bootstrapped samples per sample size,
with sample sizes dK/2e, dK/2e + 3, . . . ,K − 4,K − 1.

With a tolerance of 5% we see that local PCA outperforms all the other
estimators, however we can see on the PCA estimates in the first column (PCA
applied on the whole set, see section 8.2) that there is a sharp dependence on
the curvature as expected. PCA manages to give the correct dimension when
θ . 46◦, but fails when θ = 63◦. Considering that if we project a top segment
of a sphere with a θ as defined above onto the the tangent plane at the top,
the radius of the projection will be R sinθ, whereas if we project on the normal
of the tangent plane the length of the projection will be R(1 − cosθ), this is
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reasonable since

(1 − cos 45◦

sin 45◦

)2

≈ 0.043 and
(1 − cos 63◦

sin 63◦

)2

≈ 0.38 .

(Remember that we use the eigenvalues of the covariance matrix.)
For the other estimators, dependence on the curvature is not so clear, but

they tend to underestimate the dimension, especially the EAP dimension esti-
mator.

8.5 n-Spheres and Hyper Cube Faces

We compare dimension estimates of uniformly sampled hyper cube faces (the
border of a hyper cube) with dimension estimates of uniformly sampled n-
spheres with n = 2, 4, 6, 8, to see how well the estimators perform on manifolds
of different dimension, and if the sharp edges between the hyper cube faces
affect the dimension estimates. The results are presented in figure 8.4, and we
can conclude that in general the sharp edges make no difference. It seems that
the two estimators that are most affected though are local PCA and the EAP
estimator, which is reasonable since they depend on tangent planes.

For the n–spheres local PCA gives the best results, for the others none is
significantly better than the others, but the EAP dimension estimator gives the
worst results.
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Figure 8.4: Dimension estimation results for n-spheres and hyper cube faces of varying dimension. Parame-
ters: Local PCA: k = 10; Takens’ estimator: r = µ1 + σ1; Hill: k = 50; k–NN: k = 2, γ = 1, 10 bootstrapped samples
per sample size, with sample sizes 25, 28, . . . , 46, 49.
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8.6 Hyper Cube Edges

The manifolds considered so far have had an extrinsic dimension of one more
than the intrinsic dimension. To really verify that the dimension estimators
estimate intrinsic dimension and not just underestimate extrinsic dimension
we need to test them on manifolds with high extrinsic dimension. Therefore
we have constructed a manifold which we call hyper cube edges, since it is a
generalization of the edges of a 3-dimensional cube. The hyper cube edges with
codimension one (extrinsic dimension one more than the intrinsic dimension)
are the faces of the hyper cube. The hyper cube edges of codimension 2 are the
union of the borders of each face. The hyper cube edges of codimension 3 are
the borders of each linear piece in the hyper cube edges of codimension 2 and
so on.

We have generated hyper cube edges with extrinsic dimension 10 and in-
trinsic dimension varying between 2 and 9. The results are presented in figure
8.5.
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Figure 8.5: Dimension estimation results for hyper cube edges of varying intrinsic dimension. The density
of the points is kept constant at 100 data points per area unit. Parameters: Local PCA: k = 10; Takens’ estimator:
r = µ1 + σ1; Hill: k = 50; k–NN: k = 2, γ = 1, 10 bootstrapped samples per sample size, with sample sizes
25, 28, . . . , 46, 49.

We see that now there is a tendency to overestimate the dimension instead,
at least for the two lowest dimensions. This goes against the general notion
that dimension estimation algorithms always give a negative bias, expressed
in [5] as

To our knowledge, a phenomenon common to all algorithms of
intrinsic dimension estimation is a negative bias in the dimension
estimate. It is believed that this is an effect of undersampling the
high-dimensional manifold.

We see here that the bias in the dimension estimate depends on the extrinsic
dimension of the manifold. And in fact we have constructed an estimator of
dimension from equation (7.6) which has positive bias in general, but due its
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high variance we have not considered it further. It is an interesting problem
to investigate where the bias really comes from for the Hill, Takens and k–NN
estimator.

But it is clear that the dimension estimators measure intrinsic dimension and
not the extrinsic dimension, since the dimension estimates in general increases
when the dimension increases. There is one exception to this and that is the
EAP dimension estimators estimates in dimension 2. We have not investigated
why this is the case, but one speculation is that it is caused by that in each
corner or the manifold it branches out in very many directions and the lower
the intrinsic dimension, the more branches.

Another interesting thing to notice is how bad the discrimination between
the manifolds of higher dimension is (the dimension estimates are very similar
for n = 8 and 9). By looking at the diagram it seems that the EAP dimension
estimator actually is slightly better than the others at doing this, but it needs
further investigation.

Local PCA gives here the worst results, for n = 3, . . . , 9, almost all dimension
estimates are either 6 or 7. It should be noted though that since k = 10, the
maximal possible dimension estimate is 10.

8.7 High-Dimensional Noise
Finally we will consider noisy manifolds; we will consider the simplest case — a
flat uniformly sampled manifold with normal noise added to it, a generalization
to higher dimensions of the manifold depicted in figure 8.1. We have used a
five-dimensional manifold and added noise of varying dimension d. As before,
local dimension estimation is done by cutting out a ball. Thinking of figure
8.1, we see that if the radius of the ball is small enough in comparison to the
standard deviation of the noise, the local dimension estimate should be the
dimension of the manifold plus the dimension of the noise.

We have used normal noise orthogonal to the manifold with a standard
deviation σ in each direction, with varying σ and dimension. The radius of
the ball defining the local data is kept constant. To get an idea of what the
distribution of the data looks like at a local level for varying σ, we have applied
PCA to it. The eigenvalues of the principal components, i.e. the variance we
get if we project the data onto each principal component is shown in figure 8.6.
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Figure 8.6: The eigenvalues of the principal components for 50 samples inside the unit ball, drawn from
the uniform distribution on the 5-dimensional hyper plane with orthogonal normal noise of dimension d and
variance σ2 added.
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For data sampled from an isotropic distribution the eigenvalues will de-
crease continuously, much like in the top diagrams in figure 8.6. However, if
the data lie close to a linear subspace of dimension d, i.e. most of the variance
in the data is kept when we project onto this subspace, the d first eigenvalues
will be substantially higher than the rest, as in the bottom diagrams in figure
8.6.

This means that an accurate dimension estimator should yield 5 as the
dimension estimate if σ/r ≤ 0.1 and 5 + d if σ/r = 0.25. The results from the
dimension estimators that we have tested is shown in figure 8.7; we have used
50 samples for each manifold.
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Figure 8.7: Local dimension estimation with 50 samples and cut-off radius r = 1 for the five-dimensional
hyper plane with orthogonal normal noise of dimension d and standard deviation σ. Parameters: Local PCA:
k = 20; Takens’ estimator: r = µ1 + σ1; Hill: k = 50; k–NN: k = 2, γ = 1, 10 bootstrapped samples per sample size,
with sample sizes 25, 28, . . . , 46, 49.

Taking the ubiquitous bias into account, the EAP dimension estimator per-
forms remarkably well. It is especially interesting to see that with a standard
deviation of 0.1 and a noise dimension of 10, all the other estimators give a
much higher dimension estimate than with a standard deviation of 0.25 and
noise dimension 2, which is incorrect. However, comparing with figure 8.2 we
see that the dimension estimates at σ = 0.25, d = 10 are much more biased than
the estimates of the uniformly sampled unit ball with 50 samples. This is prob-
ably due to the fact that the distribution is non-uniform, the EAP dimension
estimator is optimal for uniform distributions.

Otherwise local PCA gives the best estimates in general, with little variance
and highest estimates when σ = 0.25. However, it is more sensitive to the
moderate noise, i.e. σ = 0.1, than the others, especially the k–NN estimator.
The more biased estimators, the k–NN estimator and the EAP estimator, are
less sensitive to moderate noise.
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Chapter 9

Conclusions

We have introduced a novel intrinsic dimension estimator, the EAP (Expected
Absolute Projection) estimator for data sets supported on smooth manifolds.
The estimator is based on a constant CX defined for each X = Rn with a given
norm, which is monotonically increasing in n. The constant CX can be inter-
preted as the minimal constant in the reversed triangle inequality, but we also
have that if X = Rn with Euclidean norm, (CX/2)−1 is the expected absolute
projection of a random vector from the unit sphere onto any given vector on
the unit sphere if the distribution is uniform, hence the name.

The EAP estimator carries out local dimension estimation, i.e. we restrict
the attention to a local data set defined as the data points within a cut-off
radius from a certain point. If the manifold is sufficiently smooth so that the
probability measure from which the data are sampled is well approximated by
a tangent space Rd within the cut-off radius, and the probability measure is
sufficiently uniform, then as long as we have sufficiently many points we can
from the data points construct a set T for which the empirical constant CX(T)
defined by (7.4) is close enough to CRd . The dimension estimate is given by the
minimal d such that CX(T) ≤ CRd .

By construction of the estimator, it will have a negative bias as long as the
manifold on which the probability measure is supported is not very curved.
This was also seen clearly in the experiments.

We compared the EAP estimator on local dimension estimation problems
with four dimension estimators from the literature: local PCA, Takens’ estima-
tor, the Hill estimator, and the k–NN estimator. In general the EAP estimator
showed much more bias than the other estimators, but it had lower variance.
On n–spheres, local PCA was the best estimator, but it was also the most sen-
sitive to sharp edges and its performance on the manifolds with high extrinsic
dimension was poor. It was hard to distinguish Takens’ estimator, the Hill
estimator and the k–NN estimator from each other. For the parameters we
used, Takens’ estimator had the most variance and the least bias and the k–NN
estimator had the least variance and most bias of the three. However this will
be different for with other parameters, even though the estimates of the k–NN
estimator were not so sensitive to changes in parameters.

When we applied the dimension estimators to a flat uniformly sampled
manifold with normal noise we saw that both the dimension and the standard
deviation of the noise affected the dimension estimates, especially for moderate
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noise. But all the estimators had good results when the standard deviation of the
noise was at most 5% of the radius of the sphere delimiting the neighborhood
used for dimension estimation. The EAP dimension estimator was the least
sensitive to noise, partly because of its strong bias, but probably also because
its bias is bigger for non-uniform distributions.

From our results we conclude that so far the EAP estimator is not very
competitive; but there are multiple ways in which one might improve it and
alleviate the bias.

One disadvantage with the EAP estimator is that it requires relatively many
points to give a reasonable estimate. If we can find a better way to choose T
from the data points, we might get a smaller bias and also reduce the number
of points needed. As we noted in chapter 7, if we use more linear combinations
of the points the dimension estimate should increase. We can see in figure B.2
that adding the midpoints does not lead to this, but there might be other linear
combinations for which we can achieve it. Another possible way to improve
the EAP estimator is to use a different norm than the Euclidean norm.

Finally we want to emphasize the importance of estimating the impact of
noise on estimators of intrinsic dimension. In all real-world data sets there will
be noise, probably both from experimental noise and from variance in vari-
ables not important enough to include in the model. The vector quantization
approach is very appealing in that there is a theoretical bound for the impact of
noise, but the fact that it requires very many data points is prohibitive. There
are also methods to reduce the impact of noise which one might apply first.
Vector quantization is actually one such method, deconvolution is another [27].
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Appendix A

Quantization Dimension
Estimation

We have attempted to estimate the quantization dimension of data sets consist-
ing of 200 samples drawn from the uniform probability distribution on the unit
cubes of dimension 2, 3, 4 and 5.

To estimate the quantization dimension we first partition our data into test
sets and training sets. Following [35] we divide our samples into four quarters
and use each quarter in turn as training data and the rest as test data. For each
k < 50 we use the k-means algorithm to construct an optimal quantizer for each
set of training data, Q(i)

k , i = 1, . . . 4. The estimate of the second order error for
the optimal quantizer with k points is then taken to be

ê∗2(k) =
1
4

∑
e2(Q(i)

i |µi),

where µi is the empirical measure of test data set i. Recall that the quantization
dimension of order 2 of the probability measure µ is defined as

dim(2)
quant(µ) = − lim

k→∞

log k
log e∗2(k|µ)

.

Based on a heuristic argument, it is stated in [35] that the first minimum in the
graph of

−
log k

log ê∗2(k)

is a good estimate of the dimension in the manifold. As can be seen in figure
A.1, this is not the case when we use only 200 points. We conclude that vector
quantization as a method for dimension estimation is only applicable if we
have considerably more data points.
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Figure A.1: Test and training curves of quantization error er for four data sets
consisting of 200 points uniformly sampled on unit cubes of varying dimension.
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Appendix B

Additional Details About the
Design of the Estimators

B.1 Maximal projection

To compute

max
α∈X
‖α‖=1

∑
x∈T

(x, α)+ ,

we use the R function optim with method ’BFGS’. This means that a quasi-
Newton method is used for the optimization, for details of the algorithm see
the R documentation. To test the performance of the algorithm we applied it
one hundred times with random initial values to a number of sets consisting of
all the vectors between 20 points in R4 uniformly sampled in [−1, 1] × [−1, 1] ×
{0}×{0}. We also computed

∑
x∈T(x, α)+ for α = (cosθ, sinθ, 0, 0), with θ ∈ [0, π].

In most of the cases there was a single maximum which was found in all 100
cases, but sometimes we got a result as shown in figure B.1. Based on the
observations from this we decided to apply the optim function 10 times with
randomly selected initial values and take the maximal value when doing the
dimension estimation by EAP.
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Figure B.1: Results of optimization by BFGS method.
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Figure B.2: Results of novel dimension estimator using the vectors to the center
of the data set from the data points and the midpoints between data points,
with midpoints given lower weight, applied to uniformly sampled balls with
K samples and varying dimension.

B.3 Varying cut-off radius r for Takens’ estimator
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Figure B.3: Results from dimension estimation of top segments of 5–spheres by
Takens estimator with varying cut-off radius (cf. figure 8.3).
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Appendix C

General Results

Lemma C.1. If µ is a Borel measure on Rn, all Borel sets in R2n are measurable for
the product measure µ × µ.

Proof. It is sufficient to show that every open set inR2n belongs to the σ–algebra
generated by the semi-ring P = {E × F : E and F open, E,F ∈ Rn

}, i.e. that
each open set in R2n can obtained by countable unions and finite differences
of elements in P. Let Qε(x) ⊆ R2n denote the open hyper cube with side 2ε
centered at x. Clearly Qε(x) ∈ P for each x ∈ R2n. Furthermore, |x − y| < ε

√
2n

for any y ∈ Qε(x). Now for a given open set U ∈ R2n, define for each x ∈ U

εx = inf{|x − y| : y ∈ Uc
} /
√

2n .

Clearly Qεx (x) ⊆ U for each x ∈ U. But in fact, since Q ∩ U is dense in U,
U =

⋃
x∈Q∩U Qεx (x) and we are done. �

Lemma C.2. If Pr
[
| f (x) − f (y)| > ε

]
< κ with x, y ∼ µ for some ε, κ > 0, then with

m denoting the median, E[| f (x) −m|] ≤ sup| f (x) −m| · 2κ + ε.

Proof. We have that with x, y ∼ µ and m being the median of f (x),

Pr
[
| f (x) − f (y)| > ε

]
≥

1
2

Pr
[
| f (x) − f (y)| > ε

sign( f (x) −m)
= −sign( f (y) −m)

]
=

1
2

Pr
[
| f (x) −m| + | f (y) −m| > ε

sign( f (x) −m)
= −sign( f (y) −m)

]
≥

1
2

Pr
[
| f (x) −m| > ε

sign( f (x) −m)
= −sign( f (y) −m)

]
=

1
2

Pr
[
| f (x) −m| > ε

]
Thus if Pr

[
| f (x) − f (y)| > ε

]
< κ,

E
[
| f (x) −m|

]
≤ Pr

[
| f (x) −m| > ε

]
· sup| f (x) −m| + ε ≤ 2κ · sup| f (x) −m| + ε

�
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Appendix D

Manifolds

We will here give a short introduction to the subject of manifolds, as a reference
for the reader.

Manifolds are spaces that locally look like some Euclidean space, i.e. Rd.
The manifolds we encounter in this thesis are subsets of a Euclidean space of
higher dimension Rp (for general manifolds this is not necessarily the case) so
we can think of them as a generalization of the concept of curves and surfaces
into higher dimensions.

To give a formal definition, we need the concept of homeomorphisms:

Definition D.1. A bijective continuous function with continuous inverse is called a
homeomorphism. Two topological spaces X and Y are homeomorphic if there is a
homeomorphism from X to Y.

If two topological spaces are homeomorphic there is a one-to-one corre-
spondence of open sets given by the homeomorphism. Therefore topological
properties such as compactness, connectedness and even topological dimen-
sion are stable under homeomorphisms.

Now we can define

Definition D.2. A topological spaceM is a d–manifold ifM is connected, Hausdorff
(i.e. points can be separated by open sets) and for each x ∈ M there is a neighborhood
Ux 3 x such that Ux is homeomorphic to Rd.

Note 1: Br(x) ⊆ Rd is homeomorphic to Rd for any r > 0, x ∈ Rd. Thus any
point with a neighborhood homeomorphic to an open subset of Rd contains
a neighborhood homeomorphic to Rd. Therefore we could have used the
condition that Ux should be homeomorphic to an open subset of Rd instead.

Note 2: The Hausdorff condition is trivially fulfilled for any subset of a Eu-
clidean space Rp, since Rp is Hausdorff.

Even though it might seem that being locally homeomorphic to Rd would
entail a d–manifold to behave nicely, we often need more regularity. Therefore
we will often work with smooth manifolds. Smooth manifolds are defined the
same way as manifolds, but with with the stronger condition of being locally
diffeomorphic to a Euclidean space.
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Definition D.3. A diffeomorphism is a smooth bijective function with smooth in-
verse. If there exists a diffeomorphism φ : X → Y, then X and Y are said to be
diffeomorphic.

IfM is a smooth d–manifold, then for each point x ∈ M there is a neighbor-
hood Ux ⊆ M and a diffeomorphismφ : Rd

→ Ux. Using directional derivatives
of φ, it is possible to obtain a best linear approximation ofM at x. Thus we can
generalize the concept of tangents and tangent planes:

Definition D.4. The d–dimensional hyper plane which is the best linear approximation
of a d–manifoldM at a point x ∈ M is the called the tangent space ofM at x.

For a rigorous treatment, see e.g. [20].
For a smooth manifoldM embedded intoRp we can define a scalar product

on the tangent planes ofM by using the usual scalar product onRp. This scalar
product is called a Riemannian metric on the manifold (note the difference to the
usual meaning of the term metric). Riemannian metrics can be defined also for
smooth manifolds not embedded into Euclidean space, and the same manifold
can be given different Riemannian metrics.

A smooth manifold with a Riemannian metric is called a Riemannian man-
ifold. Using the Riemannian metric we can define angles between vectors and
length of vectors in tangent spaces the same way as they are defined from the
scalar product in Rn. This makes it possible to define length of curves and vol-
ume of open subsets. Using length of curves one can define distance between
two points in a manifold:

Definition D.5. The distance between two points on a Riemannian manifold is the
smallest possible length of a curve within the manifold going between the two points.

Note: When a manifold is embedded in Rp the length of a curve γ : [a, b]→ Rp

can be computed the usual way:

L(γ) =

∫ b

a
|γ̇(t)| dt.

This can be done also for non-Riemannian manifolds, so we can define distance
in a general manifold embedded in Rp the same way as distance is defined in
Riemannian manifolds.

When talking about distance between two points in a manifold we will often
use the term geodesic. The definition of a geodesic is as follows:

Definition D.6. A curve in a Riemannian manifold, γ : [a, b] → M, whose accel-
eration γ̈(t) is orthogonal to the tangent space at γ(t) for all t ∈ [a, b] is called a
geodesic.

The reason that geodesics are mentioned when computing distance between
two points is the following theorem:

Theorem D.1. A curve with minimal length between two points in a manifold is a
geodesic.
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For a proof, see [29].
Some d–manifolds can be isometrically embedded in Rd, i.e. there is a

distance-preserving bijective function going from the manifold to a subset of
Rd. For this to be possible it needs to have zero curvature.

The surface of a cylinder has zero curvature since it is flat in one dimension.
It is easy to see that if we cut it, it can be isometrically embedded into R2 by
rolling it up. A sphere on the other hand has non-zero curvature, if it has radius
R its curvature is 1/R2, and it is well known that a sphere cannot be mapped
to a surface isometrically (hence there are no maps of the earth which do not
distort distances).
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Appendix E

Measure theory

A measure is a countably additive function defined on a σ–ring. What this is
will become clear from the following three definitions:

Definition E.1. A σ–ring S on a set X is a collection of subsets of X such that

• {Ai}i∈N ⊆ S ⇒
⋃

i∈N Ai ∈ S, and

• A,B ∈ S ⇒ A\B ∈ S.

In other words S is closed under countable unions and differences.

Definition E.2. If S is a σ–ring on X and X ∈ S, then S is called a σ–algebra.

Note: IfS is a σ–algebra, then it is closed under finite intersections, since A∩B =
X\((X\A) ∪ (X\B)).

Definition E.3. A function f defined on a σ–ring S is countably additive if, when
{Ai}i∈N ⊆ S is a countable collection of disjoint sets

f (
⊔
i∈N

Ai) =
∑
i∈N

f (Ai),

where t denotes union of disjoint sets.

If S is a σ–ring on X and µ is a countably additive function defined on S,
we say that µ is a measure on X, and call (X,S, µ) a measure space. The sets in
S are called the measurable sets. From the definitions of a σ–ring and countably
additive functions, we have the natural rules

• If A ⊆ X and B ⊆ X are disjoint measurable sets, then AtB is measurable,
and µ(A t B) = µ(A) + µ(B); this generalizes to countably many sets.

• If A ⊆ X and B ⊆ X are measurable sets, then A\B is measurable, and
µ(A\B) = µ(A) − µ(B) + µ(B\A).

Definition E.4. A probability measure on X is a measure taking values in [0, 1] for
which X is measurable and µ(X) = 1.
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Definition E.5. A function f which can be written as

f =

n∑
j=1

b jχE j ,

where b1, . . . , bn are values in a Banach space and E1, . . . ,En are measurable sets for a
measure µ is called a measurable simple function. If µ(E j) < ∞ for j = 1, . . . ,n, it
is also an integrable simple function.

For the function f defined above the integral is defined by∫
f dµ =

n∑
j=1

b jµ(E j) .

Furthermore, the L1–norm, ‖ · ‖1 for the function f is defined as

‖ f ‖1 =

n∑
j=1

‖b j‖µ(E j) .

Definition E.6. A function f is measurable if there exist a sequence of measurable
simple functions converging pointwise to f except on a set of zero measure.

Theorem E.1. f is measurable if and only if the inverse images of measurable sets
under f are measurable.

Definition E.7. A function f is µ–integrable if there exist a sequence of integrable
simple functions { fn}n∈N that is a Cauchy-sequence for the L1–norm and that converges
pointwise to f except on a set of zero measure. Then the integral of f is defined by∫

f dµ = lim
n→∞

∫
fn dµ .

Definition E.8. A measure µ is said to be absolutely continuous with respect to
another measure ν if they are defined on the same σ–ring and

ν(E) = 0⇒ µ(E) = 0.

Theorem E.2 (Radon-Nikodym). If µ is absolutely continuous with respect to ν,
then ∃ f ∈ L1 such that µ =

∫
f dν.

Theorem E.3. If h ∈ L∞ and µ =
∫

f dν, then
∫

h dµ =
∫

f h dν.
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