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Abstract. The Neumann–Neumann method is a commonly employed domain decomposition
method for linear elliptic equations. However, the method exhibits slow convergence when applied
to semilinear equations and does not seem to converge at all for certain quasilinear equations. We
therefore propose two modified Neumann–Neumann methods that have better convergence properties
and require less computations. We provide numerical results that show the advantages of these
methods when applied to both semilinear and quasilinear equations. We also prove linear convergence
with mesh-independent error reduction under certain assumptions on the equation. The analysis is
carried out on general Lipschitz domains and relies on the theory of nonlinear Steklov–Poincaré
operators.
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1. Introduction. We consider a bounded Lipschitz domain Ω ⊂ Rd for d = 2, 3,
with boundary ∂Ω, together with the quasilinear elliptic equation with homogeneous
Dirichlet boundary conditions

(1.1)

{
−∇ · α(x, u,∇u) + β(x, u,∇u) = f in Ω,

u = 0 on ∂Ω.

We will refer to the equation as semilinear if α(x, y, z) = α̃(x)z. A common ap-
proach to generate numerical schemes for elliptic equations that can be implemented
in parallel and only rely on local communication is to employ nonoverlapping domain
decomposition methods.

The performance and convergence properties of these methods have been exten-
sively studied for linear elliptic equations, as surveyed in [9, 13], but less is known
for the methods applied to quasilinear elliptic equations. Convergence results for
overlapping Schwarz methods have been derived in [6, 8, 11, 12]. Note that [12]
even considers degenerate quasilinear equations, i.e., when α(x, y, z) = α̃(x, y, z)z and
α̃(x, y, z) = 0 for some y ̸= 0. For nonoverlapping decompositions we are only aware
of a few studies that derive rigorous convergence results. In [1] the convergence of the
Dirichlet–Neumann and Robin–Robin methods are analyzed for a one-dimensional
quasilinear elliptic equation, and in our own paper [7] we prove convergence without
order for the Robin–Robin method applied to degenerate quasilinear equations with
a p-structure. Moreover, a modified Dirichlet–Neumann method for nonlinear equa-
tions is studied in [3], and convergence is derived for one-dimensional problems. There
are also some studies relating to quasilinear equations and decompositions with cross
points [2, 4, 5, 10], but without convergence results. We are unaware of any linear
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Fig. 1: An example of a domain decomposition with two subdomains Ω1,Ω2 (left), and
one with a decomposition into two families of subdomains {Ω1,ℓ}, {Ω2,ℓ} (right).

convergence results for nonoverlapping decompositions applied to quasilinear, or even
semilinear, elliptic problems on general Lipschitz domains.

The basic nonoverlapping decompositions methods are the already mentioned
Dirichlet–Neumann, Neumann–Neumann, and Robin–Robin methods. In the con-
text of linear elliptic equations the Neumann–Neumann method has better conver-
gence properties on non-symmetric domain decompositions compared to the Dirichlet–
Neumann method. Furthermore, for linear equations and after a finite element dis-
cretization one can prove that the Neumann–Neumann method converges linearly
with an error reduction constant C that is uniformly bounded with respect to the
mesh width h, whereas the Robin–Robin method obtains a deteriorating constant of
the form C = 1−O(

√
h). With these considerations in mind, the Neumann–Neumann

method is a natural starting point for developing linearly convergent methods for more
general elliptic equations.

In order to introduce the methods, we decompose the domain Ω into two subdo-
mains Ω1 and Ω2 such that

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅ and Γ = (∂Ω1 ∩ ∂Ω2) \ ∂Ω,

where ∂Ωi denotes the boundary of Ωi and Γ is the interface separating the subdo-
mains. The subdomains can also be replaced by two families of nonadjacent subdo-
mains, which is required in order to obtain a parallel method. Two possible decom-
positions are illustrated in Figure 1.

The Neumann–Neumann method for the nonlinear equation (1.1) is then as fol-
lows. Let s1, s2 > 0 be method parameters and η0 an initial guess on Γ. For
n = 0, 1, 2, . . . , find (un+1

1 , un+1
2 , wn+1

1 , wn+1
2 ) such that

(1.2)



−∇ · α(x, un+1
i ,∇un+1

i ) + β(x, un+1
i ,∇un+1

i ) = f in Ωi,

un+1
i = 0 on ∂Ωi \ Γ,

un+1
i = ηn on Γ, for i = 1, 2,

−∇ · α(x,wn+1
i ,∇wn+1

i ) + β(x,wn+1
i ,∇wn+1

i ) = 0 in Ωi,

wn+1
i = 0 on ∂Ωi \ Γ,

α(x,wn+1
i ,∇wn+1

i ) · ν1 =

α(x, un+1
1 ,∇un+1

1 ) · ν1 − α(x, un+1
2 ,∇un+1

2 ) · ν1 on Γ, for i = 1, 2,

with ηn+1 = ηn− s1 wn+1
1

∣∣
Γ
− s2 wn+1

2

∣∣
Γ
. Here, ν1 denote the outwards pointing unit

normal on ∂Ω1, and the computed quantities (un
1 , u

n
2 , η

n) approximate (u|Ω1
, u|Ω2

, u|Γ),
respectively. We will refer to the last three equalities in (1.2) as the auxiliary problem.
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However, the Neumann–Neumann method requires the solution of four nonlinear
problems in each iteration, which is inefficient even for semilinear elliptic equations.
The method also displays surprisingly poor convergence properties for degenerate
quasilinear equations. For example consider the semilinear equation

(1.3) −∆u+ |u|u = f

and the p-Laplace equation

(1.4) −∇ · (|∇u|p−2∇u) + u = f,

both given on the unit square Ω = (0, 1)2 with a decomposition into two L-shaped
subdomains Ω1 and Ω2. The Neumann–Neumann method then requires a significantly
larger amount of equation solves compared to other methods for the semilinear equa-
tion; see Figure 2a. Furthermore, it does not even generate a decreasing error with
respect to the number of iterations for the p-Laplace equation; see Figure 2b. The
details of the numerical experiments are given in Section 9.

In order to obtain methods that require less solutions of nonlinear equations, we
propose two modified Neumann–Neumann methods based on replacing the auxiliary
problem with a linear one, i.e., we employ a linear preconditioner. For the first
modified method we replace the auxiliary problem by

(1.5)


−∆wn+1

i = 0 in Ωi,

wn+1
i = 0 on ∂Ωi \ Γ,

∇wn+1
i · ν1 =

α(x, un+1
1 ,∇un+1

1 ) · ν1 − α(x, un+1
2 ,∇un+1

2 ) · ν1 on Γ, for i = 1, 2.

We also consider a second method where the auxiliary problem is iteration-dependent,
in particular via the linearization of the auxiliary problem. For notational simplicity,
we assume that α(x, y, z) = α(x, z) and β(x, y, z) = β(x, y). We then introduce Jα
and Jβ , the Jacobians of α and β with respect to z and y, respectively. The second
modified method is then given by replacing the auxiliary problem with

(1.6)


−∇ ·

(
Jα(x,∇un+1

i )∇wi

)
+ Jβ(x, u

n+1
i )wi = 0 in Ωi,

wn+1
i = 0 on ∂Ωi \ Γ,

Jα(x,∇un+1
i )∇wn+1

i · ν1 =

α(x,∇un+1
1 ) · ν1 − α(x,∇un+1

2 ) · ν1 on Γ, for i = 1, 2.

The efficiency gains of the modified Neumann–Neumann methods over the stan-
dard Neumann–Neumann method are illustrated in Figure 2a for our semilinear exam-
ple. The modified methods even perform well for the degenerate p-Laplace equation;
see Figure 2b.

Hence, there are two goals for this study. First, to provide numerical evidence of
the advantages of the modified Neumann–Neumann methods for quasilinear equations,
including degenerate ones. Secondly, to rigorously prove linear convergence for the
modified methods when applied to semi- or quasilinear elliptic equations with domains
and subdomains that are only assumed to be Lipschitz.

The paper is organized as follows. In Section 2 we give the abstract framework
to analyze nonlinear domain decomposition methods and state the assumptions on
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(a) (b)

Fig. 2: Performance of the Neumann–Neumann method (NN) and its modifications
(MNN1, MNN2). Figure (a) illustrates the errors compared to the total amount of
linear solves, generated by Newton’s method, at each iteration for the three methods
when applied to the semilinear equation (1.3). Here, NN requires roughly 50% more
solves, for small errors, compared to MNN2. Figure (b) shows the errors at each
iteration for the three methods when applied to the p-Laplace equation (1.4). Note
that the error for the NN approximation does not decrease after five iterations.

our equations. In Section 3 we then introduce the weak formulations and in Sec-
tion 4 we define the transmission problem and the nonlinear Steklov–Poincaré op-
erators. In Section 5 we describe the Steklov–Poincaré interpretations of the two
modified Neumann–Neumann methods. We then prove convergence of the first mod-
ified method for nondegenerate quasilinear equations in Section 6 and in Section 7
we prove the convergence of the second modified method for semilinear equations.
In Section 8 we give a brief explanation how the same analysis can be applied to the
Galerkin discretization of the elliptic equation. Finally, in Section 9 we present some
numerical results that verify our analysis.

To keep the notation simple we will denote generic constants by c, C > 0, which
may change from line to line.

2. Preliminaries. Let X be a Hilbert space and X∗ its dual. We use the
notation ⟨·, ·⟩X∗×X for the dual pairing, or simply ⟨·, ·⟩ if the spaces are obvious from
context. A (nonlinear) operator G : X → X∗ is said to be demicontinuous if xn → x
in X implies that

⟨Gxn −Gx, y⟩ → 0 for all y ∈ X

and G is said to be coercive if

lim
∥x∥X→∞

⟨Gx, x⟩
∥x∥X

= ∞.

Moreover, the operator G is uniformly monotone if there exists a c > 0 such that

⟨Gx−Gy, x− y⟩ ≥ c∥x− y∥2X for all x, y ∈ X.
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Note that a uniformly monotone operator G is also coercive, since

⟨Gx, x⟩
∥x∥X

=
⟨Gx−G(0), x− 0⟩

∥x− 0∥X
+

⟨G(0), x⟩
∥x∥X

≥ c∥x∥X − ∥G(0)∥X∗ .

Finally, for a linear operator P : X → X∗ we say that P is symmetric if

⟨Px, y⟩ = ⟨Py, x⟩ for all x, y ∈ X.

Also note that for a linear P the uniform monotonicity is equivalent to

⟨Px, x⟩ ≥ c∥x∥2X for all x ∈ X.

For the analysis, we require the following geometric assumption.

Assumption 1. The domains Ω,Ωi ⊂ Rd are bounded and Lipschitz. The inter-
face Γ and exterior boundaries ∂Ω \ ∂Ωi are (d− 1)-dimensional Lipschitz manifolds.

We denote the standard Sobolev spaces by H1 and H1
0 . We will also make use of

the fractional Sobolev space H1/2, see [13, Appendix A.2] for a proper definition. We
denote our Sobolev spaces by

V = H1
0 (Ω), V 0

i = H1
0 (Ωi),

Vi = {u ∈ H1(Ωi) : Tiu = 0},
Λ = {µ ∈ L2(Γ) : Eiµ ∈ H1/2(∂Ωi)},

with the usual norms for V and V 0
i , and

∥u∥Vi = ∥u∥L2(Ωi) + |u|Vi = ∥u∥L2(Ωi) + ∥∇u∥L2(Ωi)d ,

∥µ∥Λ = ∥Eiµ∥H1/2(∂Ωi).

Here, Ei : L2(Γ) → L2(∂Ωi) denotes the extension by zero and Ti : Vi → Λ
denotes the trace operator on the interface Γ ⊂ ∂Ωi. The trace operator is a bounded
linear operator [7, Lemma 4.4]. We will also make use of the fact that Ti has a
bounded linear right inverse, which we denote by Ri : Λ → Vi. For more details, we
refer to [7, Section 4].

We assume the following structure on the equation (1.1).

Assumption 2. The functions x 7→ α(x, y, z) and x 7→ β(x, y, z) are measurable
for almost all y ∈ R and z ∈ Rd. Moreover, α and β satisfy the following conditions,
where hℓ are nonnegative functions in L∞(Ω).

• The function α is Lipschitz continuous in the variables y and z. That is,

|α(x, y, z)− α(x, y′, z′)| ≤ h1(x)
(
|z − z′|+ |y − y′|

)
for all y, y′ ∈ R, z, z′ ∈ Rd.

• The function β satisfies the local Lipschitz bound

|β(x, y, z)− β(x′, y′, z′)| ≤ L(y, y′)|y − y′|+ h1(x)|z − z′|

for all y, y′ ∈ R, z, z′ ∈ Rd. Here we assume that the Lipschitz constant L
satisfies the growth bound

(2.1) L(y, y′) ≤ C
(
1 + |y|p

∗−2 + |y′|p
∗−2

)
,
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where p∗ is the Sobolev conjugate of p = 2, i.e.,

p∗ =
2d

d− 2
,

or if d = 2, then we can take any p∗ ≥ 2.
• The functions α and β satisfy the uniform monotonicity(

α(x, y, z)− α(x, y′, z′)
)
· (z − z′) +

(
β(x, y, z)− β(x, y′, z′)

)
(y − y′)

≥ h2(x)|z − z′|2 − h3(x)|y − y′|2

for all y, y′ ∈ R, z, z′ ∈ Rd. Here,

(2.2) inf
x∈Ω

h2(x) > Cp sup
x∈Ω

h3(x),

where Cp is the largest of the Poincaré constants of Ω and Ωi.
• The source term f ∈ V ∗ and can be written

⟨f, v⟩ = ⟨f1, v|Ω1
⟩+ ⟨f2, v|Ω2

⟩ for all v ∈ V,

with fi ∈ V ∗
i , i = 1, 2.

For sake of simplicity we will only derive convergence for our second method under
the following restriction to semilinear equations.

Assumption 3. The functions α and β satisfy the following conditions, where hℓ

are nonnegative functions in L∞(Ω).
• The function α is of the form α(x, y, z) = Jα(x)z with Jα ∈ L∞(Ω)d×d. That
is, α is linear in z.

• The function β(x, y, z) = β(x, y) is differentiable with respect to y and has
measurable Jacobian Jβ : Ω× R → R, which satisfies the bounds

|Jβ(x, y)| ≤ h1(x) + L(y),

|Jβ(x, y)− Jβ(x, y
′)| ≤ L̃(y, y′)|y − y′|

for all y, y′ ∈ R. Here, we assume that the constants L and L̃ satisfies the
growth bounds

L(y) ≤ C
(
1 + |y|p

∗−2
)

and L̃(y, y′) ≤ C
(
1 + |y|p

∗−3 + |y′|p
∗−3

)
,

respectively, where p∗ is the Sobolev conjugate of p = 2, i.e.,

p∗ =
2d

d− 2
,

or if d = 2, then we can take any p∗ ≥ 2.
• The Jacobians Jα and Jβ satisfy the coercivity bound

Jα(x)z
′ · z′ + Jβ(x, y)(y

′)2 ≥ h2(x)|z′|2 − h3(x)|y′|2

for all y, y′ ∈ R, z, z′ ∈ Rd, where h2, h3 are as in (2.2).
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Example 1. Consider the semilinear reaction-diffusion equation (1.3), which cor-
responds to α(z) = z and β(y) = |y|y. This equation satisfies Assumption 2 with
h1(x) = h2(x) = 1, h3(x) = 0, and

L(y, y′) = C
(
|y|+ |y′|

)
.

The Lipschitz constant satisfies the growth bound for d = 2, 3. Similarly, the equation
satisfies Assumption 3.

Example 2. Consider the quasilinear equation with

α(x, u,∇u) = ∇u+ γ(x) sin(|∇u|)(1, . . . , 1)T

and β = 0. This equation satisfies Assumption 2 assuming that ∥γ∥L∞(Ω) is small
enough, but will not satisfy Assumption 3 since α is not linear in z.

Remark 1. Let p ≥ 2 and consider the quasilinear equation (1.4), which arises
as an implicit Euler step of the time dependent p-Laplace equation and corresponds
to α(z) = |z|z and β(y) = y. This equation does not fulfill Assumption 2 or Assump-
tion 3, but will serve to illustrate the efficiency of our numerical schemes.

3. Weak formulations. We define the operators A : V → V ∗ and Ai : Vi → V ∗
i

by

⟨Au, v⟩ =
∫
Ω

α(x, u,∇u) · ∇v + β(x, u,∇u)vdx and

⟨Aiui, vi⟩ =
∫
Ωi

α(x, ui,∇ui) · ∇vi + β(x, ui,∇ui)vidx,

respectively.

Lemma 3.1. Suppose that Assumptions 1 and 2 hold. The operators Ai then
satisfy the Lipschitz condition

∥Aiu−Aiv∥V ∗
i
≤ L

(
∥u∥Vi

, ∥v∥Vi

)
∥u− v∥Vi

,

where L satisfies the growth bound

L
(
∥u∥Vi

, ∥v∥Vi

)
≤ C

(
1 + ∥u∥p

∗−2
Vi

+ ∥v∥p
∗−2

Vi

)
.

Moreover, the operators Ai are uniformly monotone.

Proof. Let

q =
p∗

p∗ − 2
,

as in Assumption 2. This implies that that

q∗ =
q

q − 1
=

p∗

2
.

It follows that for f ∈ Lq(Ωi) and g, h ∈ Lp∗
(Ωi) we have the three term Hölder

inequality∫
Ωi

|fgh|dx ≤ ∥f∥Lq(Ωi)

(∫
Ωi

|gh|q
∗
dx

)1/q∗

≤ ∥f∥Lq(Ωi)∥|g|
q∗∥1/q

∗

L2(Ωi)
∥|h|q

∗
∥1/q

∗

L2(Ωi)

= ∥f∥Lq(Ωi)∥g∥L2q∗ (Ωi)∥h∥L2q∗ (Ωi) = ∥f∥Lq(Ωi)∥g∥Lp∗ (Ωi)∥h∥Lp∗ (Ωi).
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Using this, the regular Hölder inequality, and the Lipschitz continuity of α and β
yields∣∣⟨Aiu−Aiv, w⟩

∣∣
=

∣∣∣∣∫
Ωi

α(x, u,∇u) · ∇w − α(x, v,∇v) · ∇w + β(x, u,∇u)w − β(x, v,∇v)wdx

∣∣∣∣
≤

∫
Ωi

∣∣α(x, u,∇u)− α(x, v,∇v)
∣∣|∇w|+

∣∣β(x, u,∇u)− β(x, v,∇v)
∣∣|w|dx

≤
∫
Ωi

h1|∇u−∇v||∇w|+
(
L(u, v)|u− v|+ h1|∇u−∇v|

)
|w|dx

≤ C|u− v|Vi∥w∥Vi + ∥L(u, v)∥Lq(Ωi)∥u− v∥Lp∗(Ωi)∥w∥Lp∗(Ωi).

The Lipschitz constant can now be estimated as follows

∥L(u, v)∥Lq(Ωi) ≤ C∥1 + |u|p
∗−2 + |v|p

∗−2∥Lq(Ωi)

≤ C
(
∥1∥Lq(Ωi) + ∥|u|p

∗−2∥Lq(Ωi) + ∥|v|p
∗−2∥Lq(Ωi)

)
≤ C

(
1 + ∥u∥p

∗−2

Lp∗ (Ωi)
+ ∥v∥p

∗−2

Lp∗ (Ωi)

)
and by the Sobolev embedding Vi ↪→ Lp∗(Ωi) we have that∣∣⟨Aiu−Aiv, w⟩

∣∣ ≤ C
(
1 + ∥u∥p

∗−2
Vi

+ ∥v∥p
∗−2

Vi

)
∥u− v∥Vi

∥w∥Vi
.

To prove uniform monotonicity we use the monotonicity of α, β and (2.2) to get that

⟨Aiu−Aiv, u− v⟩

=

∫
Ωi

(
α(x, u,∇u) · ∇(u− v)− α(x, v,∇v) · ∇(u− v)

+ β(x, u,∇u)(u− v)− β(x, v,∇v)(u− v)
)
dx

≥
∫
Ωi

h2(x)|∇u−∇v|2 − h3(x)|u− v|2dx

≥ inf
x∈Ω

h2(x)

∫
Ωi

|∇u−∇v|2dx− sup
x∈Ωi

h3(x)

∫
Ωi

|u− v|2dx

≥ inf
x∈Ωi

h2(x)|u− v|2Vi
− sup

x∈Ωi

h3(x)∥u− v∥2L2(Ωi)

≥ c∥u− v∥2Vi
.

The weak formulation of the quasilinear elliptic equation is to find u ∈ V such that
Au = f in V ∗, or equivalently,

(3.1) ⟨Au, v⟩ = ⟨f, v⟩ for all v ∈ V.

Similarly, the weak formulation of the inhomogeneous problem on Ωi is the following:
For η ∈ Λ find ui ∈ Vi such that Tiui = η and

(3.2) ⟨Aiui, vi⟩ = ⟨f, vi⟩ for all vi ∈ V 0
i .

This problem has a unique solution and defines a solution operator

Fi : Λ → Vi : η 7→ ui,

see e.g. [7, Lemma 6.1].
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Lemma 3.2. Suppose that Assumptions 1 and 2 hold. The solution operators
Fi : Λ → Vi then satisfy the following local Lipschitz bound

∥Fiη − Fiµ∥Vi
≤ L

(
∥Fiη∥Vi

, ∥Fiµ∥Vi

)
∥η − µ∥Λ,

where L has the following growth

L
(
∥u∥Vi

, ∥v∥Vi

)
≤ C

(
1 + ∥u∥p

∗−2
Vi

+ ∥v∥p
∗−2

Vi

)
.

Proof. Let wi = (Riη−Riµ)− (Fiη−Fiµ) and note that Tiwi = 0, which implies
that wi ∈ V 0

i . Therefore, by (3.2) and Lemma 3.1 we get

c∥Fiη − Fiµ∥2Vi
≤ ⟨AiFiη −AiFiµ, Fiη − Fiµ⟩
= ⟨AiFiη −AiFiµ,Ri(η − µ)⟩ − ⟨AiFiη −AiFiµ,wi⟩
= ⟨AiFiη −AiFiµ,Ri(η − µ)⟩ − ⟨fi − fi, wi⟩
≤ L

(
∥Fiη∥Vi , ∥Fiµ∥Vi

)
∥Fiη − Fiµ∥Vi∥Ri(η − µ)∥Vi

≤ L
(
∥Fiη∥Vi , ∥Fiµ∥Vi

)
∥Fiη − Fiµ∥Vi∥η − µ∥Λ.

Dividing by c∥Fiη − Fiµ∥Vi
gives the Lipshchitz bound.

4. The transmission problem and the Steklov–Poincaré formulation.
The transmission problem is to find (u1, u2) ∈ V1 × V2 such that

(4.1)


⟨Aiui, vi⟩ = ⟨fi, vi⟩ for all vi ∈ V 0

i , i = 1, 2,

T1u1 = T2u2,∑2
i=1⟨Aiui, Riµ⟩ − ⟨fi, Riµ⟩ = 0 for all µ ∈ Λ.

The transmission problem is equivalent to the weak problem (3.1), see [7, Theorem
5.2]. We define the nonlinear Steklov–Poincaré operators Si : Λ → Λ∗ by

⟨Siη, µ⟩Λ∗×Λ = ⟨AiFiη − fi, Riµ⟩V ∗
i ×Vi

.

Remark 2. We will repeatedly use that the Steklov–Poincaré operators are inde-
pendent of the choice of extension Ri. To see this consider arbitrary extensions Ri, R̃i

such that TiRi = TiR̃i = I and let wi = Riµ − R̃iµ. Then Tiwi = 0 and therefore
wi ∈ V 0

i . It follows from the definition of Fi that

⟨Siη, µ⟩ = ⟨AiFiη−fi, Riµ⟩ = ⟨AiFiη−fi, wi⟩+⟨AiFiη−fi, R̃iµ⟩ = ⟨AiFiη−fi, R̃iµ⟩.

Writing out the definitions of the Steklov–Poincaré operators shows that the trans-
mission problem can be reformulated as finding η ∈ Λ such that

(4.2) Sη = 0 in Λ∗.

The solution to the transmission problem can then be recovered as (u1, u2) = (F1η, F2η).
Conversely, the solution to the Steklov–Poincaré equation can be recovered from the
solution to the transmission problem (u1, u2) by setting η = T1u1 = T2u2. For more
details, see [7, Lemma 6.2].

The Steklov–Poincaré operators inherit the properties of the operators Ai.
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Theorem 4.1. Suppose that Assumptions 1 and 2 hold. The Steklov–Poincaré
operators Si : Λ → Λ∗ then satisfy the local Lipschitz condition

∥Siη − Siµ∥Λ∗ ≤ L
(
∥η∥Λ, ∥µ∥Λ

)2∥η − µ∥Λ,

where L satisfies the growth bound

L
(
∥η∥Λ, ∥µ∥Λ

)
≤ C

(
1 + ∥η∥p

∗−2
Λ + ∥µ∥p

∗−2
Λ

)
.

Moreover, Si is uniformly monotone. The same result holds for S.

Proof. Let L(y, y′) denote any function satisfying (2.1), with constant possibly
changing line to line. To prove the Lipschitz bound we employ Lemmas 3.1 and 3.2
to get ∣∣⟨Siη − Siµ, λ⟩

∣∣ = ∣∣⟨AiFiη −AiFiµ,Riλ⟩
∣∣

≤ L
(
∥Fiη∥Vi

, ∥Fiµ∥Vi

)
∥Fiη − Fiµ∥Vi

∥Riλ∥Vi

≤ L
(
∥Fiη∥Vi

, ∥Fiµ∥Vi

)2∥η − µ∥Λ∥Riλ∥Vi

≤ L
(
∥η∥Λ, ∥µ∥Λ

)2∥η − µ∥Λ∥λ∥Λ.

The last inequality follows from the Lipschitz continuity of Fi since it implies that

∥Fiη∥Vi ≤ C(1 + ∥η∥Λ).

For the uniform monotonicity, let wi = (Riη − Riµ) − (Fiη − Fiµ) and note that
Tiwi = 0, which implies that wi ∈ V 0

i . Therefore,

⟨Siη − Siµ, η − µ⟩ = ⟨AiFiη −AiFiµ,Riη −Riµ⟩
= ⟨AiFiη −AiFiµ, Fiη − Fiµ⟩+ ⟨AiFiη −AiFiµ,wi⟩
= ⟨AiFiη −AiFiµ, Fiη − Fiµ⟩
≥ c∥Fiη − Fiµ∥2Vi

≥ c∥TiFiη − TiFiµ∥2Λ
= c∥η − µ∥2Λ.

The fact that the same holds for S follows since S = S1 + S2.

Corollary 4.2. Suppose that Assumptions 1 and 2 hold. Then the Steklov–
Poincaré operators Si, S are bijective. In particular, the Steklov–Poincaré equation (4.2)
has a unique solution η ∈ Λ.

Proof. We will use the Browder–Minty theorem [14, Theorem 26.A] in order to
prove bijectivity and must therefore show that Si is demicontinuous, coercive, and
monotone. Note that the uniform monotonicity derived in Theorem 4.1 directly yields
that Si is coercive and monotone. Demicontinuity follows from the local Lipschitz
bound in Theorem 4.1. To see this, let ηn → η in Λ and note that ∥ηn∥Λ ≤ C.
Therefore

∥Siη
n − Siη∥Λ∗ ≤ L

(
∥η∥Λ, ∥ηn∥Λ

)2∥η − ηn∥Λ ≤ C∥η − ηn∥Λ → 0,

as ηn tends to η. The same properties for S follow since S = S1 + S2. Hence, Si, S
are all bijective.
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5. Domain decomposition methods. The domain decomposition methods
can be equivalently formulated on the interface by writing ηn = Tiu

n+1
i , where un

i

approximates ui = u|Ωi
, the solution of (4.1). The interface iterates ηn then approx-

imate the solution of (4.2). The iterates of the domain decomposition methods can
also be recovered as un+1

i = Fiη
n. The methods studied here have interface iterations

of the form
ηn+1 = ηn − sP−1(Sηn).

By choosing P−1 = s1S
−1
1 + s2S

−1
2 for some parameters s1, s2 > 0 we get the stan-

dard nonlinear Neumann–Neumann method. We now propose modified Neumann–
Neumann methods based on linear preconditioners P . We suggest two choices for the
operator P that correspond to the methods (1.5) and (1.6).

Remark 3. The introduction of a third parameter s is redundant since we could
replace s1 and s2 by s̃1 = ss1 and s̃2 = ss2, respectively. However, this simplifies the
notation of the proofs.

Method 1. The iteration (1.5) is equivalent to the interface iteration

(5.1) ηn+1 = ηn − sP−1Sηn,

with the operator P : Λ → Λ∗ defined as

P−1 = s1P
−1
1 + s2P

−1
2 .

Here, s1, s2 > 0 are method parameters and Pi is the Steklov–Poincaré operator cor-
responding to the Laplace equation on Ωi. That is, if F̂i : η 7→ u denotes the solution
operator to the problem⟨Âiu, v⟩ =

∫
Ωi

∇u · ∇vdx = 0 for all v ∈ V 0
i ,

Tiu = η,

then
⟨Piη, µ⟩Λ∗×Λ = ⟨ÂiF̂iη,Riµ⟩V ∗

i ×Vi
.

Method 2. The iteration (1.6) is equivalent to the interface iteration

(5.2) ηn+1 = ηn − sP (ηn)−1Sηn,

with the operator P (ν) : Λ → Λ∗ defined as

P (ν)−1 = s1P1(ν)
−1 + s2P2(ν)

−1.

Here, s1, s2 > 0 are method parameters and Pi(ν) is the Steklov–Poincaré operator
corresponding to the linearization of (3.2) at wi = Fiν. That is, if F̂i(ν) : η 7→ u
denotes the solution operator to the problem⟨Âi(wi)u, v⟩ =

∫
Ωi

Jα(wi)∇u · ∇v + Jβ(wi)uvdx = 0 for all v ∈ V 0
i ,

Tiu = η,

then
⟨Pi(ν)η, µ⟩Λ∗×Λ =

〈
Âi

(
Fi(ν)

)
F̂i(ν)η,Riµ

〉
V ∗
i ×Vi

.
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6. Convergence analysis for MNN1. We will now prove convergence of MNN1.
We first require the following lemma.

Lemma 6.1. Let P1 and P2 be linear operators from a (real) Hilbert space X into
X∗ that are bounded, uniformly monotone, and symmetric. Then P1, P2, and

s1P
−1
1 + s2P

−1
2

are bijective. Moreover, the linear operator P = (s1P
−1
1 +s2P

−1
2 )−1 is also a bounded,

uniformly monotone, and symmetric.

Proof. First note that P1, P2, and s1P1 + s2P2 all have bounded inverses by
the Lax–Milgram lemma. We verify that P2(s2P1 + s1P2)

−1P1 is a left inverse to
s1P

−1
1 + s2P

−1
2 by(
P2(s2P1 + s1P2)

−1P1

)(
s1P

−1
1 + s2P

−1
2

)
=

(
P2(s2P1 + s1P2)

−1P1

)(
P−1
1 (s2P1 + s1P2)P

−1
2

)
= I

and similarly one can show that it is a right inverse. It follows immediately that
the inverse, i.e., P , is bounded. To show that P is uniformly monotone, let η ∈ X,
σ = Pη, and λi = P−1

i σ. As Pi are uniformly monotone and bounded, and P−1 =
s1P

−1
1 + s2P

−1
2 is bounded, one has

⟨Pη, η⟩ =
〈
σ, P−1σ

〉
=

〈
σ, (s1P

−1
1 + s2P

−1
2 )σ

〉
= s1⟨P1λ1, λ1⟩+ s2⟨P2λ2, λ2⟩
≥ c

(
∥λ1∥2X + ∥λ2∥2X

)
≥ c

(
∥P1λ1∥2X∗ + ∥P2λ2∥2X∗

)
= c∥σ∥2X∗

≥ c∥P−1σ∥2X = c∥η∥2X .

Next, since Pi is symmetric, we have for all σ, ρ ∈ X∗ that

⟨σ, P−1
i ρ⟩ = ⟨PiP

−1
i σ, P−1

i ρ⟩ = ⟨PiP
−1
i ρ, P−1

i σ⟩ = ⟨ρ, P−1
i σ⟩.

The fact that P is symmetric follows from the above, as

⟨Pη, µ⟩ =
〈
Pη, P−1Pµ

〉
= s1

〈
Pη, P−1

1 Pµ
〉
+ s2

〈
Pη, P−1

2 Pµ
〉

= s1
〈
Pµ, P−1

1 Pη
〉
+ s2

〈
Pµ, P−1

2 Pη
〉

=
〈
Pµ, P−1Pη⟩ = ⟨Pµ, η⟩.

Theorem 6.2. Let X be a (real) Hilbert space and G : X → X∗ a nonlinear
operator that is uniformly monotone and satisfies the local Lipschitz condition

∥Gµ−Gλ∥X∗ ≤ L(∥µ∥X , ∥λ∥X)∥µ− λ∥X ,

where L(∥µ∥X , ∥λ∥X) is bounded for bounded ∥µ∥X , ∥λ∥X . Then for every χ ∈ X∗

there exists a unique solution η ∈ X to Gη = χ.
Moreover, let P : X → X∗ be a linear, bounded, uniformly monotone, and sym-

metric operator and let s > 0 be small enough. The iteration

ηn+1 = ηn + sP−1(χ−Gηn)
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then converges to η and satisfies the linear error estimate

∥ηn − η∥X ≤ CLn∥η0 − η∥X

for any η0 ∈ X.

Proof. First observe that G is a bijection by the Browder–Minty theorem; com-
pare with the proof of Corollary 4.2. Hence, for every χ ∈ X∗ there exists a unique
solution η ∈ X to Gη = χ. Next, we define the operator

Kµ = µ+ sP−1(χ−Gµ)

and write

⟨PKµ− PKλ,Kµ−Kλ⟩ = ⟨Pµ− Pλ− s(Gµ−Gλ), µ− λ− sP−1(Gµ−Gλ)⟩
= ⟨Pµ− Pλ, µ− λ⟩+ s2⟨Gµ−Gλ,P−1(Gµ−Gλ)⟩

− s
(
⟨Pµ− Pλ, P−1(Gµ−Gλ)⟩+ ⟨Gµ−Gλ, µ− λ⟩

)
= I1 + s2I2 − sI3.

The second term I2 is estimated using the continuity of P−1 and G and the uniform
monotonicity of P , which yields that

I2 = ⟨Gµ−Gλ,P−1(Gµ−Gλ)⟩
≤ L

(
∥µ∥X , ∥λ∥X

)
∥µ− λ∥X∥P−1(Gµ−Gλ)∥X

≤ C1L
(
∥µ∥X , ∥λ∥X

)2∥µ− λ∥2X .

The third term I3 is estimated using the symmetry of P and the monotonicity of G,
i.e.,

I3 = 2⟨Gµ−Gλ, µ− λ⟩ ≥ c∥µ− λ∥2X .

We define
(µ, λ)P = ⟨Pµ, λ⟩

and note that this is an inner product which gives a norm ∥ · ∥P that is equivalent
to ∥ · ∥X . The latter follows as P is bounded, uniformly monotone, and symmetric.
Thus

∥Kµ−Kλ∥P = ⟨PKµ− PKλ,Kµ−Kλ⟩

≤
(
1 + s2C1L

(
∥µ∥X , ∥λ∥X

)2 − sc
)
∥µ− λ∥2P .

(6.1)

For r > 0 we define the ball

Dr = {µ ∈ X : ∥µ− η∥P ≤ r}

and then fix r > 0 large enough that η0 ∈ Dr. Since L
(
∥µ∥X , ∥λ∥X

)
is bounded on

Dr we can find C2(r) > 0 such that C1L(∥µ∥P , ∥λ∥P )2 ≤ C2(r) for all µ, λ ∈ Dr. We
can then choose s > 0 small enough that 1 + s2C2(r)− sc < 1. This implies that, for
µ ∈ Dr, we have

∥Kµ− η∥P = ∥Kµ−Kη∥P ≤ (1 + s2C2(r)− sc)∥µ− η∥P ≤ r(1 + s2C2(r)− sc) < r,
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which shows that Kµ ∈ Dr. Hence, by induction {ηn} ⊂ Dr as η0 ∈ Dr. Moreover,
according to (6.1),

∥Kµ−Kλ∥P ≤ L∥µ− λ∥P
with L < 1 for all µ, λ ∈ Dr. Therefore,

∥ηn − η∥X ≤ C∥ηn − η∥P = C∥Kηn−1 −Kη∥P ≤ CL∥ηn−1 − η∥P
≤ CLn∥η0 − η∥P ≤ CLn∥η0 − η∥X ,

which tends to zero as n tends to infinity.

Setting (X,G, χ) = (Λ, S, 0) in this abstract result immediately yields the conver-
gence of MNN1 for quasilinear problems, after noting that P is bounded, uniformly
monotone, and symmetric. Since P1 and P2 are the Steklov–Poincaré operators for
the Laplace equation this follows from [9, Chapter 4] and Lemma 6.1. In particular,
the symmetry follows since Pi is independent of the choice of extension Ri and can
be written

⟨Piη, µ⟩ = ⟨ÂiF̂iη,Riµ⟩ = ⟨ÂiF̂iη, F̂iµ⟩,

compare with Remark 2. The fact that the method is well defined, i.e., the iteration
has a unique solution at each step, is also a consequence of the above.

Corollary 6.3. Let Assumptions 1 and 2 hold and suppose that s1, s2 > 0 are
small enough. Then the iterates ηn of the interface iteration (5.1) converges linearly
to the solution of (4.2) in Λ for any η0 ∈ Λ. Moreover the iterates (un+1

1 , un+1
2 ) =

(F1η
n, F2η

n) of MNN1 converges linearly to the solution of (4.1) in V1 × V2.

7. Convergence analysis for MNN2. We will now prove convergence of our
second method for semilinear problems. We will use the following abstract convergence
result.

Theorem 7.1. Let X be a (real) Hilbert space G : X → X∗ a nonlinear operator
that is uniformly monotone and satisfies the local Lipschitz condition

∥Gµ−Gλ∥X∗ ≤ L(∥µ∥X , ∥λ∥X)∥µ− λ∥X ,

where L(∥µ∥X , ∥λ∥X) is bounded for bounded ∥µ∥X , ∥λ∥X . Then for every χ ∈ X∗

there exists a unique solution η ∈ X to Gη = χ.
Moreover, for any ν ∈ X let P (ν) : X → X∗ be a symmetric operator such that

the family of operators P (·) satisfy

∥P (ν)µ∥X∗ ≤ C1(ν)∥µ∥X for all ν, µ ∈ X,

⟨P (ν)µ, µ⟩ ≥ c∥µ∥2X for all ν, µ ∈ X,∥∥(P (ν)− P (µ)
)
λ
∥∥
X∗ ≤ C2

(
∥ν∥X , ∥µ∥X

)
∥ν − µ∥X∥λ∥X for all ν, µ, λ ∈ X,

where C1(∥µ∥X), C2(∥ν∥X , ∥µ∥X) are bounded for bounded ∥ν∥X , ∥µ∥X . In particular,
P (ν) is bounded and uniformly monotone for all ν ∈ X. Assume also that η0 is close
enough to η and that s > 0 is small enough. Then the iteration

ηn+1 = ηn + sP (ηn)−1(χ−Gηn)

converges to η and satisfies the linear error estimate

∥ηn − η∥X ≤ CLn∥η0 − η∥X .
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Proof. The fact that Gη = χ has a unique solution has already been proven
in Theorem 7.1. We define the operator K(ν)µ = µ+ sP (ν)−1(χ−Gµ) and compute

⟨P (ν)K(ν)µ− P (ν)K(ν)λ,K(ν)µ−K(ν)λ⟩
=

〈
P (ν)µ− P (ν)λ− s(Gµ−Gλ), µ− λ− s

(
P (ν)−1(Gµ−Gλ)

)〉
= ⟨P (ν)µ− P (ν)λ, µ− λ⟩+ s2⟨Gµ−Gλ,P (ν)−1(Gµ−Gλ)⟩

− s
(
⟨P (ν)µ− P (ν)λ, P (ν)−1(Gµ−Gλ)⟩+ ⟨Gµ−Gλ, µ− λ⟩

)
= I1 + s2I2 − sI3.

The second term I2 is estimated using the continuity of P (ν)−1 and G and the coer-
civity of P , which yields that

I2 = ⟨Gµ−Gλ,P (ν)−1(Gµ−Gλ)⟩
≤ L

(
∥µ∥X , ∥λ∥X

)
∥µ− λ∥X∥P (ν)−1(Gµ−Gλ)∥X

≤ C3L
(
∥µ∥X , ∥λ∥X

)2∥µ− λ∥2X .

The third term I3 can be divided further using the symmetry of P (ν) and estimated
using the monotonicity of G, i.e.,

I3 = 2⟨Gµ−Gλ, µ− λ⟩ ≥ c∥µ− λ∥2X .

We define the inner products

(µ, λ)P (ν) = ⟨P (ν)µ, λ⟩

and note that they yield norms ∥ · ∥P (ν) that are equivalent to ∥ · ∥X . Thus

∥K(ν)µ−K(ν)λ∥P (ν) = ⟨P (ν)K(ν)µ− P (ν)K(ν)λ,Kµ−Kλ⟩

≤
(
1 + s2C3L

(
∥µ∥X , ∥λ∥X

)2 − sc
)
∥µ− λ∥2P (ν).

We define
Dr = {µ ∈ X : ∥µ− η∥P (η) ≤ r},

where η is the unique solutionto Gη = χ. Let R > 0. For µ, λ ∈ DR we can find
C4 = C4(R) > 0 such that C3L(∥µ∥X , ∥λ∥X) ≤ C4 and then choose s > 0 small
enough such that L := 1 + s2C4 − sc < 1. Moreover, we can find C5 = C5(R) > 0
such that for all µ ∈ X, ν ∈ DR we have

1

C5
∥µ∥X ≤ ∥µ∥P (ν) ≤ C5∥µ∥X .

Then we can choose r small enough that 0 < r < R and∥∥(P (η)− P (ν)
)
µ
∥∥
X∗ ≤ 1−

√
L√

LC2
5

∥µ∥X .

for ν ∈ Dr, µ ∈ X. It follows that for ν ∈ Dr, µ ∈ X we have

∥µ∥2P (η) = ∥µ∥2P (ν) + ⟨P (η)µ− P (ν)µ, µ⟩ ≤
(
1 +

1−
√
L√

L

)
∥µ∥2P (ν) ≤

1√
L
∥µ∥2P (ν),

∥µ∥2P (ν) = ∥µ∥2P (η) + ⟨P (ν)µ− P (η)µ, µ⟩ ≤
(
1 +

1−
√
L√

L

)
∥µ∥2P (η) ≤

1√
L
∥µ∥2P (η).
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For µ, ν ∈ Dr we also have that

∥K(ν)µ− η∥P (η) = ∥K(ν)µ−K(ν)η∥P (η) ≤
1

L1/4
∥K(ν)µ−K(ν)η∥P (ν)

≤ 1 + s2C4 − sc

L1/4
∥µ− η∥P (ν) ≤

1 + s2C4 − sc√
L

∥µ− η∥P (η)

≤
√
Lr < r,

which shows that K(ν)µ ∈ Dr. Moreover, for all µ, λ, ν ∈ Dr

∥K(ν)µ−K(ν)λ∥P (η) ≤
1

L1/4
∥K(ν)µ−K(ν)λ∥P (ν)

≤ L3/4∥µ− λ∥P (ν) ≤
√
L∥µ− λ∥P (η)

with L < 1.
Since ηn+1 = K(ηn)ηn and η0 ∈ Dr, as η

0 is assumed to be sufficiently close to η,
we have by induction that {ηn} ⊂ Dr. Moreover,

∥ηn − η∥X ≤ C∥ηn − η∥P (η) = C∥K(ηn−1)ηn−1 −K(ηn−1)η∥P (η)

≤ C
√
L∥ηn−1 − η∥P (η)

≤ CLn/2∥η0 − η∥P (η) ≤ CLn/2∥η0 − η∥X ,

which tends to zero as n tends to infinity.

Corollary 7.2. Let Assumptions 1 to 3 hold and suppose that s1, s2 > 0 are
small enough and that η0 is close enough to η, the solution of (4.2). Then the iterates
{ηn} of the interface iteration (5.2) converges linearly to η in Λ. Moreover the iterates
(un+1

1 , un+1
2 ) = (F1η

n, F2η
n) of MNN2 converges linearly to the solution of (4.1) in

V1 × V2.

Proof. The properties of S, S1, S2 are acquired in Theorem 4.1 and Corollary 4.2
and it therefore only remains to show that the properties of P (ν) hold. We will show
that the linear operator Âi(w) : Vi → V ∗

i

⟨Âi(w)u, v⟩ =
∫
Ωi

Jα(w)∇u · ∇v + Jβ(w)uv dx

is bounded, locally Lipschitz continuous, and uniformly monotone independently of w.

By Assumption 3 we have that∣∣⟨Âi(w)u, v⟩
∣∣ ≤ ∫

Ωi

|Jα(x)∇u · ∇v|+ |Jβ(x,w)uv|dx

≤ ∥Jα∥L∞(Ωi)d×d∥u∥Vi
∥v∥Vi

+ ∥Jβ(·, w)∥Lq(Ωi)∥u∥Lp∗(Ωi)∥v∥Lp∗(Ωi)

≤ C∥u∥Vi
∥v∥Vi

+ ∥1 + |w|p
∗−2∥Lq(Ωi)∥u∥Lp∗(Ωi)∥v∥Lp∗(Ωi)

≤ C∥u∥Vi∥v∥Vi + C
(
1 + ∥w∥p

∗−2

Lp∗ (Ωi)

)
∥u∥Lp∗(Ωi)∥v∥Lp∗(Ωi).

This follows by the same three term Hölder inequality as in the proof of Lemma 3.1.
The boundedness then follows from the Sobolev embedding Vi ↪→ Lp∗(Ωi).
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Similarly, the Lipschitz continuity of Âi follows from Assumption 3 and the
Sobolev embedding Vi ↪→ Lp∗(Ωi), since∣∣⟨Âi(w)u− Âi(w̃)u, v⟩

∣∣ ≤ ∫
Ωi

(
|
(
Jα(x)− Jα(x)

)
∇u · ∇v|

+ |
(
Jβ(x,w)− Jβ(x, w̃)

)
uv|dx

)
≤ ∥Jβ(·, w)− Jβ(·, w̃)∥Lq(Ωi)∥u∥Lp∗(Ωi)∥v∥Lp∗(Ωi)

≤ ∥L̃(w, w̃)(w − w̃)∥Lq(Ωi)∥u∥Lp∗(Ωi)∥v∥Lp∗(Ωi)

≤ ∥1 + |w|p
∗−3 + |w̃|p

∗−3∥Lq′ (Ωi)
∥w − w̃∥Lp∗ (Ωi)∥u∥Lp∗(Ωi)∥v∥Lp∗(Ωi)

≤ C(1 + ∥w∥p
∗−3

Lp∗ (Ωi)
+ ∥w̃∥p

∗−3

Lp∗ (Ωi)
)∥w − w̃∥Lp∗ (Ωi)∥u∥Lp∗ (Ωi)∥v∥Lp∗ (Ωi).

Here,

q′ =
p∗

p∗ − 3
.

Finally, the uniform monotonicity follows from the same property of Jα and Jβ in As-
sumption 3, as

⟨Âi(w)u, u⟩ =
∫
Ωi

Jα(x)∇u · ∇u+ Jβ(x,w)u
2 dx

≥ h2(x)

∫
Ωi

|∇u|2 − h3(x)|u|2dx

≥ inf
x∈Ω

h2(x)

∫
Ωi

|∇u|2dx− sup
x∈Ωi

h3(x)

∫
Ωi

|u|2dx

≥ inf
x∈Ωi

h2(x)|u|2Vi
− sup

x∈Ωi

h3(x)∥u∥2L2(Ωi)

≥ c∥u∥2Vi
.

We now identify

⟨Pi(ν)η, µ⟩ =
〈
Âi

(
Fi(ν)

)
F̂i(ν)η,Riµ

〉
=

〈
Âi

(
Fi(ν)

)
F̂i(ν)η, F̂i(ν)µ

〉
,

compare with Remark 2. This then yields that Pi(ν) is bounded, locally Lipschitz
continuous, uniformly monotone, and symmetric by arguing as in Theorem 4.1.

Remark 4. The convergence result for MNN2 is somewhat weaker than the result
for MNN1, since we assume semilinearity of the equation and that the initial guess
η0 is close enough to the solution η. However, in numerical experiments the method
performs better and we expect that these extra assumptions are unnecessary in practice.

8. Discrete nonlinear domain decomposition methods. Let V h
i ⊂ Vi and

Λh ⊂ Λ be finite dimensional subsets and let V h,0
i = V h

i ∩ V 0
i . Then we can define

the discrete operators Ah : V h → (V h)∗ and Ah
i : V h

i → (V h
i )∗ by

⟨Ahu, v⟩ =
∫
Ω

α(x, u,∇u) · ∇v + β(x, u,∇u)vdx and

⟨Ah
i ui, vi⟩ =

∫
Ωi

α(x, ui,∇ui) · ∇vi + β(x, ui,∇ui)vidx,

respectively. We assume the following compatibility relation between the spaces
V h
i ,Λh.
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Assumption 4. The trace operators Ti map V h
i into Λh and have bounded linear

right inverses Rh
i : Λh → V h

i . We assume that Rh
i is bounded independently of h.

Typically we would have that V h
1 , V h

2 ,Λh share the same grid points on the interface.
In this case choosing Rh

i to be the discrete harmonic extension gives h-independent
bounds under the assumption that V h

i are finite element spaces on a regular family
of triangulations, see [9, Theorem 4.1.3].

The weak discrete problem is then to find uh ∈ V h such that

(8.1) ⟨Ahuh, v⟩ = ⟨f, v⟩ for all v ∈ V h.

Moreover, the discrete transmission problem is to find (uh
1 , u

h
2 ) ∈ V h

1 × V h
2 such that

(8.2)


⟨Ah

i u
h
i , vi⟩ = ⟨fi, vi⟩ for all vi ∈ V h,0

i , i = 1, 2,

T1u1 = T2u2,∑2
i=1⟨Ah

i u
h
i , R

h
i µ⟩ − ⟨fi, Rh

i µ⟩ = 0 for all µ ∈ Λ.

As for the continuous case, the weak problem and the transmission problem are equiv-
alent with uh

i = uh
∣∣
Ωi
. Under Assumption 4, there exists discrete solution operators

Fh
i : Λh → V h

i that satisfy TiF
h
i η = η and

⟨Ah
i F

h
i η, v⟩ = ⟨fi, v⟩ for all v ∈ V h,0

i .

Thus, we can define discrete nonlinear Steklov–Poincaré operators Si : Λ
h → (Λh)∗

as
⟨Sh

i η, µ⟩ = ⟨Ah
i F

h
i η,R

h
i µ⟩ − ⟨fi, Rh

i µ⟩.
Defining Sh = Sh

1 + Sh
2 : Λh → (Λh)∗ we can reformulate the discrete transmission

problem as finding ηh ∈ Λh such that

(8.3) Sh
i ηh = 0 in (Λh)∗.

Remark 5. The discrete Steklov–Poincaré operators are independent of the choice
of extension Rh

i , i.e., for any R̃h
i : Λh → V h

i such that TiR̃
h
i = I we have

⟨Sh
i η, µ⟩ = ⟨Ah

i F
h
i η,R

h
i µ⟩ − ⟨fi, Rh

i µ⟩ = ⟨Ah
i F

h
i η, R̃

h
i µ⟩ − ⟨fi, R̃h

i µ⟩,

compare with Remark 2. In particular, this means that, in implementation, we can
take Rh

i as the extension by zero to all interior grid points, since this is more efficient
to compute.

The discrete nonlinear Steklov–Poincaré operators have the following properties.
They follow by the same argument as in Theorem 4.1.

Theorem 8.1. Let Assumptions 1, 2 and 4 hold. Then the discrete Steklov–
Poincaré operators Sh

i : Λh → (Λh)∗ satisfy the Lipschitz bound

∥Sh
i η − Sh

i µ∥(Λh)∗ ≤ L
(
∥η∥Λ, ∥µ∥Λ

)2∥η − µ∥Λ,

where L has the following growth

L
(
∥u∥Λ, ∥v∥Λ

)
≤ C

(
1 + ∥u∥p

∗−2
Λ + ∥v∥p

∗−2
Λ

)
.

Moreover, Sh
i are uniformly monotone, i.e.,

⟨Sh
i η − Sh

i µ, η − µ⟩ ≥ c∥η − µ∥2Λ.

The constants c, C, L are independent on the choice of the spaces V h
i ,Λh. The same

result holds for Sh. In particular, there exists a unique solution ηh ∈ Λh of (8.3).
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Fig. 3: The domain decomposition used for all numerical results (left) and the com-
putational mesh with h = 0.5 (right).

The Steklov–Poincaré interpretations of the discrete versions of MNN1 and MNN2
are

ηn+1
h = ηnh − s(Ph)−1Shηnh and

ηn+1
h = ηnh − s(Ph(ηnh))

−1Shηnh ,

respectively. Here Ph and Ph(ν) are the discrete versions of P in MNN1 and MNN2.
The following convergence result follows directly from Theorem 7.1 with the choice
(X,G,P ) = (Λh, Sh, Ph).

Corollary 8.2. Let Assumptions 1, 2 and 4 hold and suppose that s1, s2 > 0 are
small enough. Then the discrete version of MNN1 converges linearly in V h

1 × V h
2 to

the solution of (8.2). The convergence factor L is independent of the spaces V h
i ,Λh.

If Assumption 3 also holds and the initial guess η0h is close enough to ηh, the same
result is true for MNN2.

9. Numerical results. For our numerical results, we consider the domain

Ω = [0, 3]× [0, 2] ⊂ R2

and the decomposition shown in Figure 3. The domain is discretized using a finite ele-
ment method with linear elements and the mesh width h = 1/256. The grid is aligned
with the interface Γ, so that Assumption 4 is fulfilled. We first consider the semi-
linear equation as in Example 1, which leads to Steklov–Poincaré operators with the
properties of Theorem 4.1 and thus linearly convergent methods as in Corollaries 6.3,
7.2 and 8.2. The source term is chosen as

f(x, y) = xy(3− x)(2− y)

and the initial guess is η0 = 0. At each iteration we compute the error

e =
∥un,h

1 − uh
1∥V1

+ ∥un,h
2 − uh

2∥V2

∥uh
1∥V1 + ∥uh

2∥V2

.

The error at each iteration is plotted in Figure 4. Here, uh
i denotes the solution to

the discrete problem (8.1) restricted to Ωi and un,h
i denotes the nth iteration of the

respective method. The method parameters are s1 = s2 = 0.2 for the Neumann–
Neumann method, s1 = s2 = 0.19 for MNN1, and s1 = s2 = 0.21 for MNN2. The
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Fig. 4: The error compared to the amount of iterations (left) and the amount of linear
solves (right) of the Neumann–Neumann (NN) and the modified Neumann–Neumann
methods (MNN1, MNN2) applied to Example 1.

method parameters are chosen to be near optimal. Since the modified methods are
cheaper to compute than the Neumann–Neumann method we also plot the error
compared to the total amount of linear systems solved to achieve this error. This can
also be found in Figure 4. From the graphs we see that the convergence rates are
similar for the three methods, but the modified methods are more efficient, since they
require less linear solves to achieve the same error.

We perform the same experiment with the same parameters on Example 2 and
plot the results in Figure 5. Now we see that the convergence rate for MNN2 is better
than for MNN1 and in terms of linear solves, both methods require less linear solves
to achieve similar error to the Neumann–Neumann method. Note that since Exam-
ple 2 satisfies Assumption 2, but not Assumption 3 we have only proven convergence
for MNN1.

Finally, the experiment is applied to the p-Laplace equation (1.4) with p = 3,
although the equation does not satisfy Assumption 2. The domain, mesh and source
term is the same as before. The method parameters are s1 = s2 = 0.2 for the
Neumann–Neumann method, s1 = s2 = 0.15 for MNN1, and s1 = s2 = 0.2 for MNN2.
The error is plotted in Figure 6. We see that the Neumann–Neumann method does
not converge while MNN1 and MNN2 converges linearly, with the latter converging
faster, especially when the error is small.
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