Prediction for Box-Jenkins models

Filip Elvander

Abstract—Here are some notes elaborating on the prediction of Box-Jenkins models with M input signals. The case of prediction of ARMA is obtained for $M = 0$.

Index Terms

I. Notes on Prediction for Box-Jenkins Models

Consider a system of the form

$$y_t = \sum_{m=1}^{M} \frac{B_m(z)}{A(z)} u_t^{(m)} + \frac{C(z)}{A(z)} e_t$$

(1)

where the polynomials A and A_m, for $m = 1, \ldots, M$ are assumed stable, C is assumed invertible, and e_t is a white Gaussian noise. Furthermore, $u_t^{(m)}$, for $m = 1, \ldots, M$, are M input signals, assumed uncorrelated with each other, as well as with e_t. We are here interested in predicting y_{t+k} for some $k \geq 1$ given the information available at time t, denoted \mathcal{F}_t. First of all, note that we may represent the system in (1) as

$$\tilde{A}(z) y_t = \sum_{m=1}^{M} \tilde{B}_m(z) u_t^{(m)} + \tilde{C}(z) e_t$$

(2)

where

$$\tilde{A}(z) = A(z) \prod_{n=1}^{M} A_n(z)$$

(3)

$$\tilde{B}_m(z) = B_m(z) A(z) \prod_{n=1, n \neq m}^{M} A_n(z)$$

(4)

$$\tilde{C}_m(z) = C(z) \prod_{n=1}^{M} A_n(z)$$

(5)

i.e., as an ARMAX model. It may be noted that the resulting polynomials inherit stability from the constituting polynomials. Furthermore, note that it is always possible to find a polynomial F of order $k-1$ and a polynomial G such that

$$\frac{\tilde{C}(z)}{\tilde{A}(z)} = F(z) + z^{-k} G(z) \quad \iff \tilde{C}(z) = F(z) \tilde{A}(z) + z^{-k} G(z).$$

(6)

Then, we may write

$$y_{t+k} = \frac{\tilde{C}(z)}{\tilde{C}(z)} y_{t+k} = \frac{F(z) \tilde{A}(z) + z^{-k} G(z)}{\tilde{C}(z)} y_t$$

(7)

$$= \frac{F(z) \tilde{A}(z)}{\tilde{C}(z)} y_t^{(m)} + \frac{G(z)}{\tilde{C}(z)} e_t^{(m)}.$$

(8)

Further, using (2), we have

$$\frac{F(z) \tilde{A}(z)}{\tilde{C}(z)} y_{t+k} = \frac{F(z)}{\tilde{C}(z)} \left(\sum_{m=1}^{M} \tilde{B}_m(z) u_t^{(m)} + \tilde{C}(z) e_t^{(m)} \right)$$

$$= \sum_{m=1}^{M} \frac{F(z) \tilde{B}_m(z)}{\tilde{C}(z)} u_t^{(m)} + F(z) e_t.$$

(9)

Thus, we have that

$$y_{t+k} = \sum_{m=1}^{M} \frac{F(z) \tilde{B}_m(z)}{\tilde{C}(z)} u_{t+k}^{(m)} + F(z) e_{t+k} + \frac{G(z)}{\tilde{C}(z)} y_t,$$

(10)

i.e., the future value may be split into three components: one corresponding to the influence of the input, one corresponding to future noise values (recall that the order of F is $k-1$), and one corresponding to the observed process history. Then, the optimal prediction is given by

$$\hat{y}_{t+k} = \mathbb{E} (y_{t+k} | \mathcal{F}_t)$$

(11)

$$= \sum_{m=1}^{M} \mathbb{E} \left(\frac{F(z) \tilde{B}_m(z)}{\tilde{C}(z)} u_{t+k}^{(m)} | \mathcal{F}_t \right) + \mathbb{E} \left(F(z) e_{t+k} | \mathcal{F}_t \right) + \mathbb{E} \left(\frac{G(z)}{\tilde{C}(z)} y_t | \mathcal{F}_t \right)$$

(12)

$$= \sum_{m=1}^{M} \mathbb{E} \left(\frac{F(z) \tilde{B}_m(z)}{\tilde{C}(z)} u_{t+k}^{(m)} | \mathcal{F}_t \right) + \mathbb{E} \left(\frac{G(z)}{\tilde{C}(z)} y_t | \mathcal{F}_t \right),$$

(13)

where the last equality follows from the fact that y_{t-n}, for $n \geq 0$, are known at time t, and $\mathbb{E} (e_{t+n} | \mathcal{F}_t) = 0$ for $n \geq 1$.

Furthermore, we may simplify the remaining expectation by noting that there always exist polynomials \tilde{F}_m, for $m = 1, \ldots, M$, all of order $k-1$, and polynomials G_m, for $m = 1, \ldots, M$, so that

$$\frac{F(z) \tilde{B}_m(z)}{\tilde{C}(z)} u_{t+k}^{(m)} = \tilde{F}_m(z) u_{t+k}^{(m)} + z^{-k} G_m(z)$$

(14)

$$\iff F(z) \tilde{B}_m(z) = \tilde{F}_m(z) \tilde{C}(z) + z^{-k} G_m(z),$$

(15)

implying

$$\frac{F(z) \tilde{B}_m(z)}{\tilde{C}(z)} u_{t+k}^{(m)} = \tilde{F}_m(z) u_{t+k}^{(m)} + \frac{G_m(z)}{\tilde{C}(z)} u_t^{(m)},$$

(16)

yielding

$$\mathbb{E} \left(\frac{F(z) \tilde{B}_m(z)}{\tilde{C}(z)} u_{t+k}^{(m)} | \mathcal{F}_t \right) = \mathbb{E} \left(\tilde{F}_m(z) u_{t+k}^{(m)} | \mathcal{F}_t \right) + \frac{G_m(z)}{\tilde{C}(z)} u_t^{(m)},$$

(17)
as \(u_{t-n}^{(m)} \), for \(n \geq 0 \), are known at time \(t \). We may summarize this in the following proposition.

Proposition 1 (Prediction). Consider the ARMAX model

\[
\hat{A}(z)y_t = \sum_{m=1}^{M} \hat{B}_m(z)u_t^{(m)} + \hat{C}(z)e_t, \tag{20}
\]

with the polynomial \(\hat{A} \) being stable and \(\hat{C} \) invertible. Then, the optimal linear \(k \)-step predictor is given by

\[
\hat{y}_{t+k} = \mathbb{E} (y_{t+k} | \mathcal{F}_t)
= \sum_{m=1}^{M} \mathbb{E} \left(\hat{F}_m(z)u_{t+k}^{(m)} | \mathcal{F}_t \right) + \frac{\hat{G}_m(z)}{\hat{C}(z)} u_t^{(m)} + \frac{G(z)}{C(z)} y_t, \tag{21}
\]

where the polynomials \(F \) and \(\hat{F}_m, \) for \(m = 1, \ldots, M \), all are of order \(k - 1 \) and \((F,G) \) and \((\hat{F}_m, \hat{G}_m) \) satisfy

\[
\hat{C}(z) = F(z)\hat{A}(z) + z^{-k}G(z) \tag{23}
\]

\[
F(z)\hat{B}_m(z) = \hat{F}_m(z)\hat{C}(z) + z^{-k}\hat{G}_m(z). \tag{24}
\]

Remark 1 (Deterministic and known inputs). Note that for the case of deterministic and known input signals \(u^{(m)} \), the expectation collapses to

\[
\mathbb{E} \left(\hat{F}_m(z)u_{t+k}^{(m)} | \mathcal{F}_t \right) = \hat{F}_m(z)u_{t+k}^{(m)} = \sum_{n=0}^{k-1} \hat{f}_n^{(m)} u_{t+k-n}, \tag{25}
\]

Also, for this case, we do not need to compute \((\hat{F}_m, \hat{G}_m) \), but may include the contribution from the input signals using the polynomials \(F(z)\hat{B}_m(z) \) and \(\hat{C}(z) \) directly, allowing us to compute the prediction as

\[
\hat{y}_{t+k} = \sum_{m=1}^{M} F(z)\hat{B}_m(z) u_{t+k}^{(m)} + \frac{G(z)}{C(z)} y_t. \tag{26}
\]

Remark 2 (Stochastic inputs). If the inputs are stochastic, but predictable, e.g., using an ARMA structure, the expectation is instead given by

\[
\mathbb{E} \left(\hat{F}_m(z)u_{t+k}^{(m)} | \mathcal{F}_t \right) = \sum_{n=0}^{k-1} \hat{f}_n^{(m)} \hat{u}_{t+k-n}^{(m)}, \tag{27}
\]

where \(\hat{u}_{t+k-n}^{(m)} = \mathbb{E} \left(u_{t+k-n}^{(m)} | \mathcal{F}_t \right), \) for \(n = 0, \ldots, k - 1 \) are predicted input values.

Remark 3. It may be noted that for deterministic and known input signals, the prediction error is given by

\[
y_{t+k} - \hat{y}_{t+k} = F(z)e_{t+k}, \tag{28}
\]

which is an MA\((k-1)\) process. If, instead, the input has to be predicted, each predicted input signal will contribute with a prediction error with MA\((k-1)\) structure. Thus, for this case, the prediction error is a sum of \(M + 1 \) independent MA\((k-1)\) processes.