

Time Series Analysis

Andreas Jakobsson

Content:

- Linear prediction
- Prediction of ARMA processes
- Prediction of ARMAX processes

Linear prediction

The optimal (linear) k-step prediction error is

$$C = E\left\{ \left[y_{N+k} - \hat{y}_{N+k|N} \right]^2 \right\} = V\left\{ y_{N+k} - \hat{y}_{N+k|N} \right\}$$
$$= C\left\{ y_{N+k} - \hat{y}_{N+k|N}, y_{N+k} \right\}$$
$$= V\left\{ y_{N+k} \right\} - \sum_{\ell=0}^{n} w_{\ell} C\left\{ y_{N-\ell}, y_{N+k} \right\}$$

as $y_{N+k} - \hat{y}_{N+k|N}$ is orthogonal to $\hat{y}_{N+k|N}$.

Linear prediction

A linear prediction is formed as a weighted sum of earlier observations, such that

$$\hat{y}_{t+k|t} = \sum_{\ell=0}^{n} w_{\ell} y_{t-\ell}$$

For a Gaussian process, the optimal predictor is linear, and is thus the same as the optimal linear predictor. This predictor is determined such that

$$C\left\{y_{N+k} - \hat{y}_{N+k|N}, y_t\right\} = C\left\{y_{N+k} - \sum_{\ell=0}^{n} w_{\ell} y_{N-\ell}, y_t\right\} = 0$$

That is, the optimal predictor is such that the resulting prediction error is uncorrelated with the earlier observed measurements. This is but a reformulation of the orthogonality principle.

Linear prediction

Example: Consider the MA process $y_t = e_t + c_1 e_{t-1}$, and assume that y_1 and y_2 have been observed. The optimal linear prediction of y_3 can then be found by noting that

$$C\{y_3 - w_1y_1 - w_2y_2, y_k\} = 0$$

for k = 1 and k = 2. Thus,

$$r_y(2) - w_1 r_y(0) + w_2 r_y(1) = 0$$

$$r_y(1) - w_1 r_y(1) + w_2 r_y(0) = 0$$

implying that

$$r_y(0) = (1 + c_1^2)\sigma_e^2$$
 $r_y(1) = c_1\sigma_e^2$ $r_y(2) = 0$

and thus

$$w_1 = -\frac{\rho_y^2(1)}{1 - \rho_y^2(1)}$$
 and $w_2 = \frac{\rho_y(1)}{1 - \rho_y^2(1)}$

where $\rho_y(1) = c_1/(1+c_1^2)$. The predictor is therefore given as

$$\hat{y}_{3|y_1,y_2} = -\frac{c_1^2}{1 + c_1^2 + c_1^4} y_1 + \frac{c_1 + c_1^3}{1 + c_1^2 + c_1^4} y_2$$

Prediction of ARMA processes

We will now consider predicting an ARMA(p,q), such that

$$A(z)y_t = C(z)e_t$$

implying that

$$y_{t+k} = \frac{C(z)}{A(z)} e_{t+k} = \sum_{\ell=0}^{\infty} \psi_{\ell} e_{t+k-\ell}$$

$$= \sum_{\ell=0}^{k-1} \psi_{\ell} e_{t+k-\ell} + \sum_{\ell=k}^{\infty} \psi_{\ell} e_{t+k-\ell}$$

$$= F(z) e_{t+k} + \sum_{\ell=k}^{\infty} \psi_{\ell} e_{t+k-\ell}$$

$$= F(z) e_{t+k} + \sum_{\ell=0}^{\infty} \psi_{\ell} e_{t-\ell}$$

where F(z) is monic as A(z) and C(z) are. Thus,

$$F(z) = 1 + f_1 z^{-1} + \ldots + f_{k-1} z^{-k+1}$$

Prediction of ARMA processes

The optimal linear prediction is formed as

$$\hat{y}_{t+k|t}(\mathbf{\Theta}) = E\left\{y_{t+k}|\mathbf{\Theta}\right\}$$

where

$$\mathbf{\Theta} = \begin{bmatrix} \mathbf{\theta}^T & \mathbf{Y}_t^T \end{bmatrix}^T$$

with $\boldsymbol{\theta}$ denoting the model parameters and

$$\mathbf{Y}_t = \left[\begin{array}{cccc} y_1 & \dots & y_t \end{array} \right]^T$$

Thus,

$$\begin{split} \hat{y}_{t+k|t}(\mathbf{\Theta}) &= E\left\{y_{t+k}|\mathbf{\Theta}\right\} \\ &= E\left\{F(z)e_{t+k}\Big|\mathbf{\Theta}\right\} + E\left\{z^{-k}\frac{G(z)}{A(z)}e_{t+k}\Big|\mathbf{\Theta}\right\} \\ &= E\left\{z^{-k}\frac{G(z)}{A(z)}e_{t+k}\Big|\mathbf{\Theta}\right\} \\ &= E\left\{\frac{G(z)}{A(z)}\frac{A(z)}{C(z)}y_{t}\Big|\mathbf{\Theta}\right\} = \frac{G(z)}{C(z)}y_{t} \end{split}$$

Prediction of ARMA processes

Proceeding, let

$$y_{t+k} = F(z)e_{t+k} + \sum_{\ell=0}^{\infty} \psi_{\ell}e_{t-\ell}$$

$$= F(z)e_{t+k} + \frac{G(z)}{A(z)}e_{t}$$

$$= F(z)e_{t+k} + z^{-k}\frac{G(z)}{A(z)}e_{t+k}$$

where the polynomials G(z) and F(z) satisfy the Diophantine equation

$$C(z) = A(z)F(z) + z^{-k}G(z)$$

with

ord
$$\{F(z)\} = k - 1$$

ord $\{G(z)\} = \max(p - 1, q - k)$

with ord $\{F(z)\}$ denoting the order of the polynomial F(z). Note that G(z) is generally not monic.

Prediction of ARMA processes

The part that may not be predicted, the prediction error, may thus be written as

$$\begin{aligned} \epsilon_{t+k|t}(\mathbf{\Theta}) &= y_{t+k} - \hat{y}_{t+k}(\mathbf{\Theta}) \\ &= F(z)e_{t+k} + \frac{G(z)}{C(z)}y_t - \frac{G(z)}{C(z)}y_t \\ &= F(z)e_{t+k} \end{aligned}$$

implying that the prediction error should behave as an $\mathrm{MA}(k-1)$ process, with

$$V\left\{\epsilon_{t+k|t}(\boldsymbol{\Theta})\right\} = \left(1 + f_1^2 + \ldots + f_{k-1}^2\right)\sigma_e^2$$

For a Normal distributed process, the $(1-\alpha)$ confidence prediction interval can therefore be expressed as

$$\hat{y}_{t+k|t} \pm u_{\alpha/2}\sigma_e \sqrt{1 + f_1^2 + \ldots + f_{k-1}^2}$$

where $u_{\alpha/2}$ denotes the $\alpha/2$ quantile in the standard Normal distribution.

Prediction of ARMA processes

Example: Compute the 5-step prediction of the SARIMA process

$$(1 - 0.2z^{-1})\nabla_{12}y_t = (1 - 0.3z^{-12})e_t$$

Thus.

$$A(z) = (1 - 0.2z^{-1})(1 - z^{-12}) = 1 - 0.2z^{-1} - z^{-12} + 0.2z^{-13}$$

$$C(z) = 1 - 0.3z^{-12}$$

implying that $p = \operatorname{ord} \{A(z)\} = 13$ and $q = \operatorname{ord} \{C(z)\} = 12$. For k = 5,

ord
$$\{F(z)\} = 5 - 1 = 4$$

ord $\{G(z)\} = \max(13 - 1, 12 - 5) = 12$

Performing the polynomial division yields

$$F(z) = 1 + 0.2z^{-1} + 0.2^{2}z^{-2} + 0.2^{3}z^{-3} + 0.2^{4}z^{-4}$$

$$G(z) = 0.2^{5} + 0.7z^{-7} - 0.2^{5}z^{-12}$$

Thus, $(1 - 0.3z^{-12})\hat{y}_{t+5|t}(\Theta) = (0.2^5 + 0.7z^{-7} - 0.2^5z^{-12})y_t$, implying that

$$\hat{y}_{t+5|t}(\mathbf{\Theta}) = 0.2^5 y_t + y_{t-7} - 0.2^5 y_{t-12}$$

Prediction of ARMAX processes

We proceed to the prediction of ARMAX processes, i.e.,

$$A(z)y_t = B(z)x_t + C(z)e_t$$

where

$$B(z) = b_d z^{-d} + b_{d+1} z^{-d-1} + \ldots + b_s z^{-s}$$

Then,

$$y_{t+k} = \frac{C(z)}{C(z)} y_{t+k}$$

$$= \frac{1}{C(z)} \left\{ A(z)F(z) + z^{-k}G(z) \right\} y_{t+k}$$

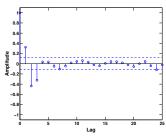
$$= \frac{1}{C(z)} \left\{ F(z)A(z)y_{t+k} + G(z)y_t \right\}$$

which yields

$$y_{t+k} = \frac{1}{C(z)} \left\{ F(z) \left[C(z) e_{t+k} + B(z) x_{t+k} \right] + G(z) y_t \right\}$$

Prediction of ARMA processes





Example: Compute the 4-step prediction of the SARIMA process

$$(1 + 0.8z^{-1} + 0.8z^{-2})\nabla_{24}y_t = (1 + 0.4z^{-1} + 0.6z^{-14})e_t$$

For this process, $p = \text{ord}\{A(z)\} = 26$ and $q = \text{ord}\{C(z)\} = 14$. Thus, ord $\{F(z)\} = k - 1 = 3$ and ord $\{G(z)\} = \max(p - 1, q - k) = 25$, yielding

$$\begin{split} F(z) &= 1 - 0.4z^{-1} - 0.48z^{-2} + 0.704z^{-3} \\ G(z) &= -0.1792 - 0.5632z^{-1} + 0.6z^{-10} + z^{-20} + 0.4z^{-21} + 0.1792z^{-24} + 0.5632z^{-25} \end{split}$$

Note that the prediction error behaves like an MA(3).

Prediction of ARMAX processes

We proceed to rewrite

$$\frac{F(z)B(z)}{C(z)}x_{t+k} = \hat{F}(z)x_{t+k} + \frac{\hat{G}(z)}{C(z)}x_{t}$$

where the polynomials $\hat{F}(z)$ and $\hat{G}(z)$ are obtained by solving the corresponding Diophantine equation, i.e.,

$$F(z)B(z) = C(z)\hat{F}(z) + z^{-k}\hat{G}(z)$$

Thus,

$$\operatorname{ord}\left\{\hat{F}(z)\right\} = k - 1$$
$$\operatorname{ord}\left\{\hat{G}(z)\right\} = \max(q - 1, s - 1)$$

where we used that ord $\{F(z)B(z)\}=k-1+r$. This implies

$$y_{t+k} = F(z)e_{t+k} + \frac{F(z)B(z)}{C(z)}x_{t+k} + \frac{G(z)}{C(z)}y_t$$
$$= F(z)e_{t+k} + \hat{F}(z)x_{t+k} + \frac{\hat{G}(z)}{C(z)}x_t + \frac{G(z)}{C(z)}y_t$$

Prediction of ARMAX processes

This gives the k-step prediction

$$\begin{split} \hat{y}_{t+k|t}(\mathbf{\Theta}) &= E\left\{y_{t+k}|\mathbf{\Theta}\right\} \\ &= F(z)E\{e_{t+k}|\mathbf{\Theta}\} + \hat{F}(z)E\{x_{t+k}|\mathbf{\Theta}\} + \frac{\hat{G}(z)}{C(z)}E\{x_{t}|\mathbf{\Theta}\} + \frac{G(z)}{C(z)}E\{y_{t}|\mathbf{\Theta}\} \\ &= \hat{F}(z)E\{x_{t+k}|\mathbf{\Theta}\} + \frac{\hat{G}(z)}{C(z)}x_{t} + \frac{G(z)}{C(z)}y_{t} \end{split}$$

Thus,

$$\epsilon_{t+k|t}(\mathbf{\Theta}) = F(z)e_{t+k} + \hat{F}(z)x_{t+k}$$

If e_t and x_t are independent,

$$\begin{split} V\{\epsilon_{t+k|t}(\mathbf{\Theta})\} &= V\{F(z)e_{t+k}\} + V\{\hat{F}(z)x_{t+k}|\mathbf{\Theta}\} \\ &= \sum_{\ell=0}^{k-1} f_{\ell}^2 \sigma_e^2 + \sum_{\ell=0}^{k-1} \sum_{p=0}^{k-1} \hat{f}_{\ell}\hat{f}_p C\{x_{t+\ell}, x_{t+p}|\mathbf{\Theta}\} \end{split}$$