Time Series Analysis
Fall 2019
Andreas Jakobsson

Administration

Course program
Course webpage
http://www.maths.lu.se/kurshemsida/fmsn45masm17/

Registration
Sign up, check, add social security number.

Book

Teaching staff
Prof. Andreas Jakobsson, MH:217, aj@maths.lth.se
Office hours: Wedn 10-12 (until 11/12).
Additional office hours: 12/12 at 9-12.
Note: I will be unavailable 13-19/12. Please plan accordingly.
Filip Elvander, MH:138
Office hours: Tue 9-12 (until 4/12)
Per Niklas Waaler, MH:223
Office hours: 10-11 on the 5/12 and 10/12, and 10-12 on the 16/12.
Per Niklas Waaler, Amanda Nilsson, Erik Wik, Wilhelm Ålander

Tutorial exercises
The tutorials will be held on Thursdays and Fridays; see schedule. No tutorials this week.

Regular problems
Regular textbook problems from the course book.

Mini projects
There are three mini-projects to prepare you for the computer exercises. These are voluntary.

Computer exercises
The course examination consist of 3 mandatory computer exercises. They take a long time; come well prepared. Sign up on the webpage. If you are not done, try to get graded at a later exercise.

Computer exercise 0 is voluntary and review stochastic processes.
Examination

The examination consist of the computer exercises, a take-home exam and a project.

Project examination will take place on 21/12 (13-16) or on 18/1 (13-16).

A detailed project report and presentation material should be handed in no later than at the start of the presentation.

The take-home is available at 12.00 on 14/1, and is due 21/1, at 13.15.

<table>
<thead>
<tr>
<th></th>
<th>Max</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer exercises</td>
<td>P/F</td>
<td>P</td>
</tr>
<tr>
<td>Take-home exam</td>
<td>30</td>
<td>P</td>
</tr>
<tr>
<td>Project presentation</td>
<td>P/F</td>
<td>P</td>
</tr>
<tr>
<td>Project report</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>

Number of airline passengers
Average ice breakup date of the Tanara River

SAR image of oil spill covering the coastal waters of the Yellow Sea, South Korea, Dec. 11, 2007
Course content

This course treats:
- Modelling of linear stochastic systems
- Pre-treatment of measurements
- Prediction, filtering and reconstruction
- Parameter estimation
- Model selection and validation
- Recursive techniques
- Spectral estimation

What to do next:
- Stationary and non-stationary spectral estimation (VT1, 2020).
- Non-linear time series analysis (HT1+2).
- Financial statistics (HT2).
- Valuation of derivative assets (HT1).
- Loads of cool thesis projects!!

Thesis proposals

Some current thesis proposals:
- Future spaceborne synthetic aperture radar systems (with German Aerospace Center, Oberpfaffenhofen, Germany).
- Three projects on radar signal processing (with Axis).
- Evaluation of energy prognosis (with EnergyOpticon).
- Unsupervised learning of sepsis data.
- Modelling of gait patterns for Parkinson patients.
- Detection and modelling of voice changes.
This week

We will cover

• Multivariate random variables. Stochastic processes.
• Reading instructions: Ch. 1, 2, 3.1-3.3
• Problems: 2.1-2.3, 3.1-3.4
• Three video lectures!