1) The pole-zero plots and the spectral densities can be combined as A-III, B-II and C-I. The strongest peak in I has a somewhat higher frequency than the other spectral densities which connects to the covariance function in 1. The spectral density in I is also more damped than the strongest peaks in II and III which also corresponds to the more damped covariance function in 1. The spectral density in III has a stronger peak than the highest in II and connects to the more undamped covariance function in 2. The spectral density in II also has a peak at a larger frequency value which shows up as the non-smooth shape of the covariance function in 3. A-III-2 is AR(3), B-II-3 is AR(4) and C-I-1 is AR(2).

2) The expected value is given from
\[E[X_t] = 0.6E[e_t] + 0.3E[e_{t-1}] + 0.1E[e_{t-2}] = 0.6m + 0.3m + 0.1m = m. \]
The covariance function is
\[r_X(\tau) = C[X(t), X(t + \tau)], \]
\[
\begin{align*}
 r_X(0) &= (0.6^2 + 0.3^2 + 0.1^2)\sigma^2 = 0.46\sigma^2 \\
 r_X(1) &= (0.6 \cdot 0.3 + 0.3 \cdot 0.1)\sigma^2 = 0.21\sigma^2 \\
 r_X(2) &= (0.6 \cdot 0.1)\sigma^2 = 0.06\sigma^2,
\end{align*}
\]
and \(r_X(\tau) = 0 \) for \(\tau > 2 \). Symmetry gives \(r_X(-\tau) = r_X(\tau) \). The spectral density is
\[R_X(f) = \sum_{\tau=-\infty}^{\infty} e^{-2\pi i f \tau} r_X(\tau) = \sigma^2(0.46 + 0.42 \cos(2\pi f) + 0.12 \cos(4\pi f)). \]

3) The variance of \(\hat{\beta}_1 \) is
\[V[\hat{\beta}_1] = V[\frac{X_5 - X_1}{4}] \]
\[
= \frac{1}{16}(r_X(0) - 2r_X(4) + r_X(0)) \\
= \frac{1}{16}(2 - 2e^{-4/2}) = 0.1081,
\]
and the variance of \(\hat{\beta}_2 \) is
\[V[\hat{\beta}_2] = V[\frac{2X_5 + X_4 - X_2 - 2X_1}{4 + 1 + 1 + 4}] \]
\[
= \frac{1}{100}(10r_X(0) + 8r_X(1) - 2r_X(2) - 8r_X(3) - 8r_X(4)) = 0.1125.
\]
Accordingly is \(\hat{\beta}_1 \) more reliable as \(V[\hat{\beta}_1] < V[\hat{\beta}_2] \).
4) a) The Yule-Walker equations are

\[
\begin{align*}
 r_X(0) + r_X(1) + 0.5r_X(2) &= 1 \\
 r_X(1) + r_X(0) + 0.5r_X(1) &= 0 \\
 r_X(2) + r_X(1) + 0.5r_X(0) &= 0,
\end{align*}
\]

with solution \(r_X(0) = 12/5, r_X(1) = -8/5 \) and \(r_X(2) = 2/5 \). From the next step of the Yule-Walker equations, \(r_X(3) + r_X(2) + 0.5r_X(1) = 0, r_X(3) = 2/5 \). Due to symmetry we get \(r_X(0) = 12/5, r_X(1) = -8/5, r_X(2) = 2/5 \) and \(r_X(3) = 2/5 \).

b) The characteristic equation of the AR(2)-polynomial is \(z^2 + z - 0.5 = 0 \) which has solutions \(z_1 \approx 0.37 \) and \(z_2 \approx -1.37 \). The variances are \(V[Y_2] = V[e_2] = 1, V[Y_3] = V[e_2 + e_3] = 2 \) and \(V[Y_4] = V[1.5e_2 - e_3 + e_4] = 4.25 \). The pole \(|z_2| > 1 \) is outside the unit circle, which causes an unstable process. The variances increase for larger values of \(t \) and will continue to do so as more and more independent noise variables are included in the variances for larger \(t \).

5) a) The covariance function is two times differentiable as

\[
\begin{align*}
 r_X(\tau) &= e^{-\alpha \tau^2/2}, \\
 r'_X(\tau) &= -\alpha \tau e^{-\alpha \tau^2/2}, \\
 r''_X(\tau) &= (\alpha^2 \tau^2 - \alpha) e^{-\alpha \tau^2/2} = -r_X'(\tau).
\end{align*}
\]

b) For a Gaussian process, all linear combinations of the process values have a Gaussian distribution. For the Gaussian process,

\[
Y(t) = X'(t) - \frac{X(t + 0.1) - X(t)}{0.1},
\]

the expected value is

\[
E[Y(t)] = E[X'(t)] - E[X(t + 0.1)] - E[X(t)] = 0 - \frac{m - m}{0.1} = 0.
\]

as the derivative \(X'(t) \) always has the expected value zero. The variance is given as

\[
V[Y(t)] = C \left[X'(t) - \frac{X(t + 0.1) - X(t)}{0.1}, X'(t) - \frac{X(t + 0.1) - X(t)}{0.1} \right]
\]

\[
= -r'_X(0) + 10r'_X(0.1) + 10r'_X(0) \\
-10r'_X(-0.1) + 100r_X(0) - 100r_X(0.1) \\
-10r'_X(0) - 100r_X(-0.1) + 100r_X(0) \\
= \frac{2}{0.1^2}(1 - 0.9) - 200\ln 0.9 - 2(-200\ln 0.9){0.9} \approx 3.1423.
\]

Then

\[
P(Y(t) > 0.1) = 1 - P(Y(t) \leq 1) = 1 - \Phi((1 - 0)/\sqrt{3.14}) = 1 - \Phi(0.5641) = 0.29.
\]
a) The spectral densities are given as

\[R_S(f) = \sum_\tau e^{-i2\pi f \tau} r_X(\tau) = 4 - \left(e^{i2\pi f} + e^{-i2\pi f}\right) = 4 - 2\cos 2\pi f, \]

\[R_N(f) = \sum_\tau e^{-i2\pi f \tau} r_N(\tau) = 4 + \left(e^{i2\pi f} + e^{-i2\pi f}\right) = 4 + 2\cos 2\pi f, \]

and the frequency function of the Wiener filter is

\[H(f) = \frac{R_S(f)}{R_S(f) + R_N(f)} = \frac{1}{2} - \frac{1}{4} \cos 2\pi f = \frac{1}{2} - \frac{1}{8} \left(e^{-i2\pi f} + e^{i2\pi f}\right). \]

The frequency function of the specified filter structure \(Y_t = aX_{t-1} + bX_t + cX_{t+1} \) is \(H(f) = \sum_u e^{-i2\pi fu} h_u = ae^{-i2\pi f} + b + ce^{i2\pi f} \). Identification of coefficients gives \(a = c = -1/8 \) and \(b = 1/2 \).

b) With the signal and noise uncorrelated,

\[E[(S_t - (aX_{t-1} + bX_t + cX_{t+1}))^2] = \\
4((1 - b - 0.1c)^2 + (a + 0.1b)^2 + (0.1a)^2 + c^2) \\
-2(1 - b - 0.1c)(-a - 0.1b) + 2c(1 - b - 0.1c) \\
+0.2a(-a - 0.1b) + 4(a^2 + b^2 + c^2) + 2ab + 2bc. \]

The minimum is found from the derivatives with respect to \(a, b, c \) set to zero, which gives the following system of equations

\[
\begin{align*}
15.68a - 0.78b - 0.2c &= -2 \\
0.78a + 15.68b + 0.78c &= 7.8 \\
-0.2a + 0.78b + 15.68c &= 0.8,
\end{align*}
\]

with the solution \(a = -0.10, b = 0.510, \) and \(c = 0.025 \).