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Yesterday news

Definition 2.1: For any stochastic process, we define a

I mean value function, m(t) = E [X (t)],

I covariance function, r(s, t) = C [X (s),X (t)],

I variance function, v(t) = V [X (t)] = r(t, t),

I correlation function, ρ(s, t) = C [X (s),X (t)]√
V [X (s)]V [X (t)]

.
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Yesterday news

A weakly stationary stochastic process is defined with

I mean value function m(t) = E [X (t)] = m,

I covariance function r(s, t) = r(t − s) = r(τ),

I variance function v(t) = r(t − t) = r(0),

I correlation function ρ(τ) = r(τ)
r(0) ,

where τ = t − s. (Definitions 2.4 and 2.5)

Additional properties (Theorem 2.2):

I r(0) ≥ 0,

I r(−τ) = r(τ),

I r(0) ≥ |r(τ)|.
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Schedule for today

I Strictly stationary processes

I Correlation (covariance) function

I Estimation of mean value with examples

I Shortly, estimation of covariance function
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Same covariance - different processes

A weakly stationary process is not unambiguously defined.
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Strictly stationary processes

A process is strictly stationary if the distribution function remains
unchanged after a shift of the time scale. A strictly stationary
process is always weakly stationary.

In this course we deal with two strictly stationary processes:

I Random harmonic functions.

I Gaussian processes. (Lecture 3)
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Random harmonic functions

Realizations of X (t) = A cos(t + φ), where A is a stochastic variable and
a) φ = 0; b) φ ∈ U(0, π); c) φ ∈ U(0, 2π).
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The processes a) and b) are non-stationary and c) is strictly stationary,

where the covariance function is r(τ) = E [A2]
2 cos(τ).
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Correlation function

The correlation function for any stochastic process X (t) is defined
as

ρ(s, t) =
C [X (s),X (t)]√
V [X (s)]V [X (t)]

,

which is simplified to

ρ(τ) =
r(τ)√
r(0)r(0)

=
r(τ)

r(0)
,

for a weakly stationary stochastic process where τ = t − s.
Therefore, the correlation function is just a normalized form of the
covariance function, where ρ(0) = 1.
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Correlation example
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Example 1

The correlation function ρ(τ) = (0.8)|τ |, τ = 0,±1,±2, . . . for the
weakly stationary stochastic process Xt , t = 0,±1,±2, . . ..
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Example 2

The correlation function ρ(τ) = (−0.8)|τ |, τ = 0,±1,±2, . . . for
the weakly stationary stochastic process Xt , t = 0,±1,±2, . . ..
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Data and correlation function

The main period of data is reflected in the period of the correlation
and covariance function.
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Data and correlation function

High correlation for large values of τ is connected to a more
periodic data sequence.
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Exercise

Realizations from three different stationary processes and corresponding

covariance functions are presented. Identify the realizations and

covariance functions respectively. Finally combine the figures

corresponding to each process.
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Ensemble mean

For a weakly stationary stochastic process the mean value
function, m(t) = m. When the number of ensembles approaches
infinity, the mean values for all t approach m.
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Mean value over time

As we usually have just a one or a few ensemble(s), the averaged
value of just one realization of data xt , t = 1 . . . n, using the mean
value over time

m̂n =
1

n

n∑
t=1

Xt ,

gives an unbiased (väntevärdesriktigt) estimate of m, as

E [m̂n] =
1

n

n∑
t=1

E [Xt ] =
1

n
(m + m + . . .+ m)︸ ︷︷ ︸

n

= m.
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Linearly ergodic

A stationary process is linearly ergodic, (linjärt ergodisk), as the
ensemble mean can be estimated using the mean value over time.
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Old exam exercise (modified)

The average level m of a stationary stochastic process,
Yt = m + Xt , t = 0,±1,±2, . . ., should be estimated. A model of
the process Xt is defined by

Xt = et − 2et−1 + et−2,

where et , t = 0,±1,±2 . . ., is white noise with expected value zero
and variance one. One can choose between two estimates for m,

m̂1 =
Yt + Yt−1

2

or

m̂2 =
Yt + Yt−2

2
.

Which is the most optimal estimator, m̂1 or m̂2?
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Variance of m̂n

The variance is calculated as

V [m̂n] = C [
1

n

n∑
t=1

Xt ,
1

n

n∑
s=1

Xs ] =
1

n2

n∑
s=1

n∑
t=1

r(s − t).

With s − t = u we get

V [m̂n] =
1

n2

n−1∑
u=−n+1

(n − |u|)r(u).

For large n,

V [m̂n] ≈ 1

n

∑
u

r(u).

If V [m̂n]→ 0 when n→∞, m̂n is consistent, (konsistent).

19 / 23



Chapter 2 2.3.1 2.2.3 2.5.1 and 2.5.2 2.5.3

Exercise 2.16: Numbers in the average

Suppose that, Xt , t = 0,±1,±2..., is a stationary process with
unknown mean m, known variance σ2 and correlation function

ρ(τ) = 0.5|τ |, τ = 0,±1,±2, . . . .

We would like to estimate m by averaging N1 consecutive samples
of the process. Suppose that N1 is large and approximate the
variance of the estimator.

Also, find the value of N2, that would have been necessary in order
to achieve the same variance, if the elements of the process had
been uncorrelated.
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Estimation of the covariance function

A weakly stationary process is ergodic of second order if the
covariance function fulfills 1

n

∑n
τ=1 r(τ)2 → 0 when n→∞. We

can estimate the covariance function as the time average from one
realization as,

r̂n(τ) =
1

n

n−τ∑
t=1

(Xt −m)(Xt+τ −m).

If m is unknown the estimate m̂n = 1
n

∑n
t=1 Xt is used. The

estimate r̂n(τ) is biased as

E [r̂n(τ)] =
1

n

n−τ∑
t=1

r(τ) =
1

n
(n − τ)r(τ).

When n→∞, E [r̂n(τ)]→ r(τ), i.e. the estimate is asymptotically
(asymptotiskt) unbiased. (Theorem 2.5)
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Example: Unbiased estimate

The covariance estimate is divided with n − τ . We see that the
variance of the estimates for large τ will be large as they are based
on very few data values. The true covariance function is shown
with crosses.
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Example: Biased estimate

To suppress the variance for large τ the biased covariance estimate
is used, dividing by n.
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Therefore the biased covariance estimate is most often applied.
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