
5 Equivariance

Assuming that the family of distributions, containing that unknown distribution that
data are observed from, has the property of being invariant or equivariant under
some transformation, it is natural to demand that also the estimator satisfies the
same invariant/equivariant property.

5.1 The principle of equivariance

Let P = {P✓ : ✓ 2 ⌦} be a family of distributions. Let G = {g} be a class of trans-
formations of the sample space, i.e. g : X 7! X , that is a group under composition.

Definition 8 If (i) when X ⇠ P✓ and

X 0 = gX ⇠ P✓0 2 P ,

for each g 2 G, for some element ✓0 in ⌦ and (ii) if for each fixed g as ✓ traverses ⌦,
so does g✓, then P is called invariant under G . 2

Example 19 Let F be a fixed distribution on Rn, P = {F (x� ✓) : ✓ 2 R} and with
ga(x) = x+ a, G = {ga : a 2 R}. Then P is invariant under G. 2

Assume G is a group of transformations that leave P invariant. Then the map

g : P✓ ⇠ X 7! gX ⇠ P✓0

induces a map ḡ on ⌦ as

ḡ : ⌦ 3 ✓ 7! ✓0 2 ⌦,

i.e. ✓0 = ḡ✓.
It is easy to see that if {P✓} are distinct (i.e. di↵erent ✓’s give rise to di↵erent

P✓’) and G is a group then Ḡ = {ḡ} is a group.

Example 20 (ctd.) In the previous example, with ga(x) = x + a and ⌦ = R = {✓},
the induced maps on ⌦ are given by

ga : P✓ ⇠ X 7! X + a ⇠ P✓+a = P✓0 ,

so that ✓0 = ✓ + a, i.e. ✓0 = ḡ✓ with

ḡ : ✓ 7! ✓ + a.

2
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The groups G, Ḡ are related via: For every measurable set A

P✓(gX 2 A) = Pḡ✓(X 2 A),

since X ⇠ P✓ implies gX ⇠ Pḡ✓, or equivalently

P✓(g
�1(A)) = Pḡ✓(A).

Now assume the set of probabilities P are invariant under the transformations
G, Ḡ, and assume we want to estimate the estimand h(✓), for some function h. What
forms on h are possible?

Example 21 Let f be a fixed density on Rn+m and assume X = (X
1

, . . . , Xn) and
Y = (Y

1

, . . . , Yn) are jointly distributed according to a density in the location model
family

P = {f(x� ⇠, y � ⌘) : (⇠, ⌘) 2 R2}.
Let

ga,b : Rn+m 3 (x, y) 7! (x+ a, y + b) 2 Rn+m,

ḡa,b : R2 3 (⇠, ⌘) 7! (⇠ + a, ⌘ + b) 2 R2,

and G = {ga,b : (a, b) 2 R2} and Ḡ = {ḡa,b : (a, b) 2 R2}. Then P is invariant under
the groups of transformations G, Ḡ.

(i): Assume we want to estimate

h(⇠, ⌘) = ⌘ � ⇠.

Under the transformations ga,b, ḡa,b the estimand is transformed to

h(⇠0, ⌘0) = h(⇠, ⌘) + (b� a).

A sensible estimator should give values that are transformed from d (when based on
the random variables X, Y ) to d0 = d+ (b� a) (when based on the random variables
(X 0, Y 0) = (X + a, Y + a)). (This is really the defining property for an equivariant
estimator, cf. the sequel.) The estimation problem can be labeled invariant if the loss
function satisfies L((⇠0, ⌘0), d + (b � a)) = L((⇠, ⌘), d). Such loss functions exist:
The condition is equivalent to the loss function being of the form L((⇠, ⌘), d)) =
⇢(h(⇠, ⌘)� d) for some function ⇢.

(ii): Assume we want to estimate

h(⇠, ⌘) = ⇠2 + ⌘2.

Under the transformations ga,b, ḡa,b the estimand is transformed to

h(⇠0, ⌘0) = (⇠ + a)2 + (⌘ + b)2

= h(⇠, ⌘) + 2(⇠a+ ⌘b) + a2 + b2

6= h(⇠, ⌘) + (a, b),
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for any function  that depends on only (a, b). But a sensible estimator should give val-
ues that are transformed from d (when based on (X, Y )) to d0 = d+2(⇠a+⌘b)+a2+b2

(when based on (X 0, Y 0)) to keep the principle of invariance, or equivalently put to be
an equivariant estimator. However the value d0 is transformed via a transformation
that depends on the unknowns (⇠, ⌘), and this is a not a realizable estimator (it de-
pends on the unknown parameters). 2

To keep the principle of invariance, and the estimation model invariant, we thus need
to have an estimand that after the transformation depends on ✓ only through h(✓).
This means that h(ḡ✓) should depend on ✓ only through h(✓). Now assume that this
holds. Then the map ḡ generates a map on value space H = {h(✓) : ✓ 2 ⌦} of the
estimand as

ḡ : ✓ 7! ✓0,

g⇤ : H 3 h(✓) 7! h(ḡ✓) 2 H,

so that g⇤h(✓) = h(ḡ✓). Note that the condition that h(ḡ✓) should depend on ✓ only
through h(✓) makes g⇤ a well defined map. Let G⇤ = {g⇤} denote the set of such
transformations. It is easy to see that if Ḡ is a group then G⇤ is a group.

Now assume that G, Ḡ,G⇤ leave P invariant and the estimand is h(✓). The loss
function is called invariant if

L(ḡ✓, g⇤d) = L(✓, d).

Such a loss function gives the same loss for an estimator value d based on X as far the
transformed estimator value g⇤d (which is the same transformation as the estimand
undergoes) based on the transformed gX.

If G, Ḡ,G⇤ leave P invariant and L is an invariant loss function, the estimation
problem is called invariant.

It is now clear how to define an equivariant estimator.

Definition 9 An estimator �(X) for an invariant estimation problem is called equiv-
ariant if

�(gX) = g⇤�(X),

for every g 2 G, g⇤ 2 G⇤.

5.2 Location equivariance

Recall that a location family of distributions was given by

P = {f(x� ⇠) : ⇠ 2 ⌦}.
In this section we will treat that case that the sample space is ⌅ = Rn and that
⌦ = R, but other setups are possible, cf. Examples 6 and 7.
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Definition 10 (Location invariance) Let P be a location family, and L(⇠, d) a loss
function. The loss functions is called location invariant if

L(⇠ + a, d+ a) = L(⇠, d),

for every ⇠ 2 ⌦, d, a 2 R. If L is location invariant the estimation problem is called
location invarinant.

Note that by construnction f⇠+a(x+a) = f⇠(x). Note also that for the location model
the group operations are given by

ga(ḡa) : z 7! z + a,

with a 2 R.

Definition 11 (Location equivariants estimator) If P , L is a location invariant esti-
mation problem and � is an estimator. Then � is called location equivariant if

�(x+ a) = �(x) + a.

Note that this is also consistent with our definition of equivariant estimators since for
location families the group operation is given by g⇤a : d 7! d+ a.

Theorem 4 Assume that (X,P , L) is a location invariant problem, and � is an equiv-
ariant estimator. Then the bias, variance and risk of �(X) are all constant (i.e. they
do not depend on ⇠).

Proof. (i). The bias is

E⇠(�(X))� ⇠ = E
0

(�(X + ⇠))� ⇠

= E
0

(�(X)) + ⇠ � ⇠

= E
0

(�(X)),

where the first equality is by the invariance of the family and the second is the linearity
of the expectation. Thus the bias does not depend on ⇠.

(ii): The variance is

V ar⇠(�(X)) = E⇠(�(X)2)� (E⇠(�(X)))2

= E
0

(�(X + ⇠)2)� (E
0

(�(X + ⇠))2

= E
0

(�2(X) + 2�(X)⇠ + ⇠2)� E
0

(�(X))2 � 2⇠E
0

(�(X))� ⇠2

= V ar
0

(�(X)),

where the second equality follows by the invariance of the family and the third follows
by the equivariance of the estimator. Thus the variance is independent of ⇠.
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(iii): The risk is

E⇠(L(⇠, �(X))) = E
0

(L(⇠, �(X + ⇠)))

= E
0

(L(⇠, �(X) + ⇠))

= E
0

(L(0, �(X))),

where the first equality follows by the invariance of the family, the second by the
equivariance of the estimator, and the third by the invariance of the loss function.
Thus the risk is independent of ⇠.

2

We next give a characterization of the set of equivariant estimators that is useful.

Lemma 3 Let �
0

be a fixed equivariant estimator. The set of (location) equivariant
estimators is given by

� = {� = �
0

+ u : u(x) = u(x+ a), for all x 2 X , a 2 R}.
Proof. Assume first that �

0

is fixed equivariant estimator, and u and invariant
estimator , i.e. u(x+ a) = u(x) for all x, a. Define � = �

0

+ u. Then

�(x+ a) = �
0

(x+ a) + u(x+ a)

= �
0

(x) + a+ u(x)

= �(x) + a,

i.e. � is equivariant.
Assume instead that �

0

is a fixed equivariant estimator and let � be an arbitrary
equivariant estimator. Define u = � � �

0

. Then u is invariant:

u(x+ a) = �(x+ a)� �
0

(x+ a)

= �(x) + a� �
0

(x)� a

= �(x)� �
0

(x)

= u(x),

and � = �
0

+ u. 2

Note that this means that we get all equivariant estimators by taking one fixed
such �

0

and add an estimator u as above. Estimators u such as above we can call
invariant. Thus the totality of all equivariant estimators is obtained by taking one
fixed such estimator and going through (adding) the totality of invariant estimators.

Next we give a characterization of the invariant estimators u in the above charac-
terization of �. Let X = Rn and ⌦ = R. Define the set

U = {u : u(x+ a) = u(x), x 2 X , a 2 ⌦}
of invariant (functions) estimators.
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Lemma 4 Under the above assumptions

U = {u(x
1

, . . . , xn) = h(x
1

� xn, . . . , xn�1

� xn) : h function on Rn�1}.

Proof. (�) Assume that u = h for a function h : Rn�1 ! R. Then

u(x+ a) = h(x
1

+ a� xn � a, . . . , xn�1

+ a� xn � a)

= h(x
1

� xn, . . . , xn�1

� xn)

= u(x),

and thus u is invariant.
(⇢) Converseley, assume instead u is invariant so u(x + a) = u(x) for all x, a.

Define the function h : Rn�1 ! R by h(x
1

, . . . , xn�1

) = u(x
1

, . . . , xn�1

, 0). Then by
the invariance of u

u(x
1

, . . . , xn) = u(x
1

� xn, x2

� xn, . . . , xn � xn)

= h(x
1

� xn, . . . , xn�1

� xn).

2

In particular when n = 1, u is invariant if and only if u is a constant (function of
x
1

� x
1

= 0).
If we combine the previous we get the following characterization of the set � of

equivariant estimators.

Theorem 5 Let �
0

be a fixed equivariant estimator. Under the above assumptions

� = {� = �
0

� v : v function defined on Rn�1}.

Definition 12 Assume we have a location equivariant inference problem. If

�̂ = argmin�2�R(⇠, �)

exists it is called the Minimum Risk Equivariant (MRE) estimator of ⇠.
2

Recall that the risk for equivariant estimators is independent of the parameter
⇠, and thus if the MRE estimator exists it mimimizes the risk uniformly over all
parameter values ⇠. Note also that if it exists we can define the MRE as

�̂ = argmin�2�R(0, �)

= argmin�2�E0

(L(0, �(X))).
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Assuming that L is invariant, one could ask what forms of L are possible?

Lemma 5 The set of invariant loss function is

{L(⇠, d) = ⇢(d� ⇠) : ⇢ function R ! R+, ⇢(0) = 0}.
Proof. Assume first that L is invariant, i.e. that for all a

L(⇠ + a, d+ a) = L(⇠, d).

Define ⇢(u) = L(0, u). Put a = �⇠ to get L(⇠, d) = L(0, d� ⇠) = ⇢(d� ⇠).
Conversely, assume L(⇠, d) = ⇢(d� ⇠). Then

L(⇠ + a, d+ a) = ⇢(d+ a� ⇠ � a)

= ⇢(d� a)

= L(⇠, d),

so that L is invariant. 2

The next result gives the MRE estimator for location families.

Theorem 6 Assume X = (X
1

, . . . , Xn) is distributed according to a location family
and let Y = (Y

1

, . . . , Yn�1

), with Yi = Xi �Xn, for i = 1, n� 1. Assume there exists
a fixed equivariant estimator �

0

of ⇠, with finite risk. If

v̂(y) = argmin{v:Rn�1!R}E0

(⇢(�
0

(X)� v(y))|y)
exists for each y, then

�̂(x) = �
0

(x)� v̂(y),

is MRE.

Proof. By definition the MRE is given by

�̂ = argmin�2�E0

(L(0, �(X)))

= �
0

� argmin{v:Rn�1!R}E0

(L(0, �
0

(X)� v(Y )))

= �
0

� argmin{v:Rn�1!R}E0

(⇢(�
0

(X)� v(Y )))

= �
0

� argmin{v:Rn�1!R}

Z
E

0

(⇢(�
0

(X)� v(Y ))| y) dP (y),

where the second equality follows by the characterization of the set of equivariant
estimators � in Theorem 5, and the third by the characterization of the invariant
loss functions in Lemma 5. Since the integrand in the last line is non-negative and
we integrate with respect to a probability measure dP , it follows that the integral is
minimized by minimizing each integrand, which shows the statement of the theorem.
2

We get following two special cases.
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Corollary 2 Under the assumptions in Theorem 6, we have the following two MRE
estimators:

(i) If ⇢(u) = u2 is the quadratic loss function then

�̂(x) = �
0

(x)� E
0

(�
0

(X)|y).

(ii) If ⇢(u) = |u| then

�̂(x) = �
0

(x)�med(�
0

(x)|y),

where med(�
0

(X)|y) is the conditional median of �
0

(X) given Y = y.

Proof. (i) E
0

((�
0

(X)� v(y))2|y) is minimized by v̂(y) = E(�
0

(X)|y). (ii) E
0

(|�
0

(X)� v(y)||y)
is minimized by the conditional median of �

0

(X) given Y = y. 2

Example 22 Assume we have one observation, i.e. n = 1. Then since an arbitrary
equivariant estimator can be written as

�(x) = �
0

(x)� v(x� x)

= �
0

(x) + c,

for a fixed equivariant estimator �
0

(x) and arbitrary constact c, and since �
0

(x) = x
is eqivariant, it follows that

�(x) = x+ c

are the only equivariant estimators.
To find the MRE estimator we need to find

v̂ = argminv2RE0

(⇢(x� v)).

If ⇢ is convex this is always possible, and v̂ is unique if ⇢ is strictly convex (cases
(i),(ii) below).

(i) If ⇢(u) = u2 then

v̂ = E
0

(X)

is the MRE.
(ii) If ⇢(u) = |u| then

v̂ = med(X)

is the MRE.
(iii) If ⇢(u) = 1{|u| > k} then minimizing E

0

(⇢(x � v)) = P
0

(|x � v| > k) is the
same as maximizing P (|X � v|  k). The outcome of this optimization depends on
the form of the distribution of X. a) Assume that F has a density f and that it is
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symmetric around 0 and unimodal. Then v̂ = 0 and thus the MRE is �̂(x) = x�0 = x.
b) Assume instead that f is symmetric around zero and U-shaped, with support on
[�c, c]. Then v̂

1

= c�k and v̂
2

= k�c are both minimizers and thus �̂
1

(x) = x�c�k
and �̂

2

(x) = x + c � k are both MRE estimators. (Note that ⇢ is not strictly convex
in this case.)

2

Example 23 Assume x
1

, . . . , xn are i.i.d. N(⇠, �2) with �2 known. Let �
0

= x̄. Then
�
0

is equivariant, and it is a complete su�cient statistic (it is the T in an exponential
family). Also Y = (X

1

,�Xn, . . . , Xn�1

�Xn) is ancillary (it has a distribution that
does not depend on ⇠). Basu’s theorem then says that Y is independent of X̄. Thus

v̂(y) = argminvE0

(⇢(�
0

(X)� v(y))|Y = y)

= argminvE0

(⇢(�
0

(X)� v(y)))

which is a constant v̂ (i.e. does not depend on y). Thus x̄ � v̂ is the MRE. If ⇢ is
convex and even, then since the distribution of X̄ is symmetric around 0 under E

0

clearly v̂ = 0 so that X̄is the MRE. 2

The next result shows a least favorable property of the Gaussian distribution.

Theorem 7 Let F be the class of all univariate distributions with density f w.r.t.
Lebesgue measure and variance �2 = 1. Let X

1

, . . . , Xn be i.i.d. distributed according
to density in Ff = {f(x � ⇠ : ⇠ 2 R)} with ⇠ = E(Xi), with f fixed but arbitrary in
F . Assume L(⇠, d) = (d� ⇠)2, and let � the MRE estimator of ⇠ (which exists since
L is convex). Let

rn(F ) = EF0(L(0, �(X))).

Then rn(F ) is largest when F is the Gaussian distribution.

Proof. We showed that the MRE estimator in the normal case is �̃(x) = X̄. The
risk is

E⇠((�̃(X)� ⇠)2) = E
0

((X̄)2)

=
1

n
.

But this is the risk of �̃(X) under f
0

for any f 2 F . Thus, since

min
�2�

Rf0(0, �)  Rf0(0, �̃)

= min
�2�

Rf0(0, �),

the theorem is proved. 2
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Recall that for squared error loss, the minimizer is

v̂(y) = E
0

(�
0

(X)|Y = y),

and the MRE is

�̂(x) = �
0

(x)� E(�
0

(X)|Y = y),

for an arbitrary fixed equivariant estimator.

Theorem 8 (Pitman estimator) Assume X
1

, . . . , Xn is a i.i.d. sample distributed ac-
cording to location family, let f be (marginal) density and let Y = (X

1

�Xn, . . . , Xn�1

�
Xn), and assume L(⇠, d) = (⇠ � d)2. Then the MRE estimator �̂(x) = �

0

(x) �
E

0

(�
0

(X)|Y ) is given by

�̂(x) =

R
uf(x

1

� u, xn � u) du
R
f(x

1

� u, . . . , xn � u) du

and called the Pitman estimator of ⇠.

Proof. Let �
0

(x) = xn and note that this is an equivariant estimator. Let y
1

=
x
1

� xn, . . . yn�1

= xn�1

� xn, yn = xn which in matrix formulation is Y = AX with
matrix A having Jacobian |A| = 1. Then the joint density of Y = (Y

1

, . . . , Yn) is (by
the change of variable formula)

pY (y1, . . . , yn) = f(y
1

+ yn, . . . , yn�1

+ yn, yn),

and the conditional density of �
0

(X) = Xn = Yn given y = (y
1

, . . . , yn�1

) is

f(y
1

+ yn, . . . , yn�1

+ yn, yn)R
f(y

1

+ t, . . . , yn�1

+ t, t) dt
.

Therefore

E(�
0

(Xn)|y) =

R
tf(y

1

+ t, . . . , yn�1

+ t, t) dt
R
f(y

1

+ t, . . . , yn�1

+ t, t) dt

=

R
tf(x

1

� xn + t, . . . , xn�1

� xn + t, t) dt
R
f(x

1

� xn + t, . . . , xn�1

� xn + t, t) dt

which with change variable u = xn � t becomes

= xn �
R
uf(x

1

� u, . . . , xn � u) du
R
f(x

1

� u, . . . , xn � u) du
.

Thus

�̂(x) = �
0

(x)� E(�
0

(X)|y)
=

R
uf(x

1

� u, . . . , xn � u) du
R
f(x

1

� u, . . . , xn � u) du
,

which ends the proof. 2
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Example 24 Assume X
1

, . . . , Xn are i.i.d. Un(⇠ � b/2, ⇠ + b/2) with b assumed
known and ⇠ unknown. The joint density is

f(x
1

� ⇠, . . . , xn � ⇠) =

(
1

bn
if ⇠ � b

2

 x
(1)

 x
1

 . . .  xn  x
(n)  ⇠ + b

2

,
0 otherwise.

where x
(1)

 . . .  x
(n) is the ordered sample. Assume we have quadratic loss function

⇢(u) = u2. Then the MRE is then given by the Pitman estimator as

�̂(x) =

R x(1)+b/2

x(x)�b/2 ub
�ndu

R x(1)+b/2

x(n)�b/2 b
�ndu

=
u2

2

|x(1)+b/2

x(n)�b/2

u|x(1)+b/2

x(n)�b/2

=
1

2
(x

(1)

+ x
(n)).

2

5.3 Randomized estimators and equivariance

Randomized estimators �̃(X) based on a sample X can be obtained using a deter-
ministic rule �

�̃(X) = �(X,W )

with W a r.v. that is independent of X and with a known distribution (i.e. a
distribution that is not a function of the unknown parameter ✓).

One can define invariance of location family distributions and loss functions as
before

f(x0; ⇠0) = f(x, ⇠),

L(⇠0, d0) = L(⇠, d),

under transformations

x0 = x+ a,

⇠0 = ⇠ + a,

d0 = d+ a.

One defines a randomized estimator to be equivariant if

�(X + a,W ) = �(X,W ) + a,
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for all a. As before one can show that bias, variance and risk are all constant for such
estimators.

It is easily seen that the set of equivariant estimators is given by

{�(x, w) = �
0

(x, w) + u(x, w) : u(x+ a, w) = u(x, w), 8x, w, a}
and with �

0

a fixed equivariant estimator.
Again one can show that the condition u(x+a, w) = u(x, w), 8x, w, a, holds if and

anly if u is a function of y = (x
1

� xn, . . . , xn�1

� xn), so that �(x, w) is equivariant
if and only if

�(x, w) = �
0

(x, w)� v(y, w).

Finally the MRE estimator is obtained by minimizing

E
0

(⇢ {�
0

(X,W )� v(Y,W )} |Y = y,W = w).

But, one can start with any equivariant estimator, so we start with a nonrandom-
ized equivariant estimator �

0

(X). Then

E
0

(⇢(�
0

(X)� v(Y,W ))|Y = y,W = w) = E
0

(⇢(�
0

(X)� v(Y,W ))|Y = y) ,

since y is a function of x and X and W are independent. Then the minimizing
function v̂ will not depend on w, and therefore it will be nonrandomized. Thus the
MRE estimator (if it exists) also when allowing for randomized estimators, will be
nonrandomized.

Example 25 Assume ⇢ is quadratic loss function. Then

v̂ = argminvE0

(⇢(�
0

(X)� v(Y,W ))|Y = y,W = w)

is given by

v̂(y, w) = E
0

(�
0

(X)|Y = y,W = w)

= E
0

(�(X)|Y = y)

and is not a function of w. 2

Thus, starting with a nonrandomized equivariant estimator �
0

(X), the MRE estimator
�
0

(X)� v̂(Y ) =: �̂(X) is nonrandomized.

5.3.1 Su�ciency and equivariance

Assume P is a location model family of distributions and that T is a su�cient statistic
for ⇠. Then any estimator �(X) of ⇠ can be seen as a randomized estimator based on
T , since there is always a randomized edstimator �̃(T ) = �(X) and thus

�(X) = �̄(T,W )
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for a deterministic rule �̄, and with W a r.v. independent of T and with known
distribution (so in particular not a function of ⇠). Now assume that T = (T

1

, . . . , Tr)
and equivariant, so that

T (x+ a) = T (x) + a.

Then one sees that the distribution of T is a location family (show this!), and we
can view T as the original sample. Now since �

0

(X) = T (X) is equivariant and
nonrandomized, one has that

v̂(y, w) = argminv:Rn�1!RE0

(⇢(�
0

(T )� v(Y,W ))|Y = y,W = w)

is a function only of y. Therefore the MRE estimator is given by

�̂(T ) = �
0

(T )� v̂(Y )

and is a function only of the su�cient statistic T .
2

This reasoning shows one connection between su�ciency and equivariance, namely
that for a location family, if there is a su�cient statistic that is also equivariant, the
the MRE estimator can be found to depend only on T .

Are MRE estimators unbiased?

Lemma 6 Assume we have squared error loss. Then
a) If �(X) is an equivariant estimator with bias b, then �(X) � b is equivariant,

unbiased and has smaller risk that �(X).
b) The (unique) MRE estimator is unbiased.
c) If a UMVU estimator exists and is equivariant then it is MRE.

Proof. a) Clearly �(X) � b is equivariant and unbiased. Then since bias, risk, and
variance does not depend on ⇠

E
0

((�(X)� b)2) = Var
0

(�(X)� b) + bias(�(X)� b)2

= Var
0

(�(X))

which is (uniformly in ⇠) smaller than

E
0

((�(X))2) = Var
0

(�(X)) + bias(�(X))2.

b) If �(X) is the MRE and it is not unbiased, so if it would have a bias b > 0,
then �(X) � b would be unbiased, equivariant, with smaller risk which contradicts
that �(X) is the MRE.

c) An unbiased miminum risk estimator that is equivariant is by b) the MRE. 2
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Definition 13 An estimator � of g(✓) is called risk-unbiased if

E✓L(✓, �(X))  E✓L(✓
0, �(X)), (1)

for all ✓0 6= ✓.

Example 26 (Mean-unbiasedness) Assume we have squared error loss, and assume
�(X) is an estimator such that E(�(X)2) < 1. Then (1) is translated to

E✓((�(X)� g(✓))2)  E✓((�(X)� g(✓0))2)

for all ✓0 6= ✓. Now assume that ✓ is fixed and let ✓0 vary and let us study the right
hand side of (1). This is smallest, seen as a function of g(✓0), for the value g(✓),
by (1). However, we know that the right hand side of (1) is minimized by E✓(�(X)).
Since the loss function is strcitly convex the minimizing value is unique, and thus (1)
is equivalent to

g(✓) = E✓(�(X)),

i.e. the “usual” definition of unbiasedness. 2

The next result shows that MRE estimators are risk-unbiased.

Theorem 9 Assume that � is MRE for estimating ⇠ in a location invariant estima-
tion problem. Then � is risk-unbiased.

Proof. The condition for risk-unbiasedness is

E⇠⇢(�(X)� ⇠0) � E⇠⇢(�(X)� ⇠),

for all ⇠0 6= ⇠. Since the risk is constant for equivariant estimators, we can let ⇠ = 0
to obtain the condition

E
0

⇢(�(X)� a) � E
0

⇢(�(X)),

for all a. But �(X) is the MRE estimator, so it has smaller risk than �(X) � a for
any a. Thus the condition for risk-unbiasedness is satisfied. 2
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