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Rational agents

A rational agent

e has clear preferences

e models uncertainty via expected values of variables or functions of
variables

e chooses actions with the optimal expected outcome for itself from
among all feasible actions
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A rational agent

has clear preferences

models uncertainty via expected values
of variables or functions of variables
chooses actions with the optimal
expected outcome for itself from among
all feasible actions
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A rational agent

e has clear preferences

e models uncertainty via expected values
of variables or functions of variables

e chooses actions with the optimal
expected outcome for itself from among
all feasible actions

E(ball position)
E(ball velocity | push gently) =] v p(v | pg) év
E(ball velocity | push hard)

E(ball position | old position, velocity)

expectation probability
densit
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A rational agent

e has clear preferences

e models uncertainty via expected values
of variables or functions of variables

e chooses actions with the optimal
expected outcome for itself from among
all feasible actions

action* = argmax E[ r(ball position) p(ball position | action) ]
action

reward

O (determined by

preferences)
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A rational agent

e has clear preferences f
e models uncertainty via expected values of variables or functions of

variables
e chooses actions with the optimal expected outcome for itself from

among all feasible actions
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Internal forward models

A forward model predicts future states given current state and action

As; = F(st,a¢)

St - [xt, Ztl Adt, dtl d, Tt]

at = [vxr vZ’ a)]

Ast =P~ 5
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Internal forward models

A forward model predicts future states given current state and action

As; = F(st,a¢)

Problem:
The function # is often unknown and parameterized functions imply many

assumption!

Solution:

Be Bayesian! Define a prior over #and integrate over all possible
functions!
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Gaussian Processes

A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.

F(X) ~ N(u(X), K(X, X))
y = f(X) + N (0, ql)

Common choice for the mean function Common choice for the Kernel function

w(X) =0 K(Xm,Xp) = of eXP(Z XJ XJ)

) + € Omn

The likelihood of N sample pairs (x;, y;) is given by

fwmzﬁmwxwmm
:/fN(f(X),Ul)N(}L(X);K(X: X))

Zero mean assumption

=TI 0i10. KX X) + ot

Learning to make decisions under uncertainty
Judith Butepage — butepage@kth.se




GP regression

Gaussian Processes }

f(X)+noise
o
(9]

Everything is jointly Gaussian distributed

y N 0 K(X,X)+ ol K(X,x*) e
0/ K(X*, X) i((x*3 X*) 4 Uncertainty

f*
1.5 ® Training points
True function
2 1 1
-3 2 -1 0 1 2 3
X
Predictive posterior distribution N e

P(f*|x* X,y) = N(m*, L*¥)
m* = K(x*, X)K(X.X) ly
Y= K(x*,x*) — K(x*, X)K(X, X)*K(x*, X) T,

f(X)+noise

Uncertainty
05F Predicted function values
® Training points
True function
A I . |
-3 -2 1 0 1 2 3
X
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1 Rational agents

s

A rational agent

e has clear preferences f
e models uncertainty via expected values of variables or functions of

variables
e chooses actions with the optimal expected outcome for itself from

among all feasible actions

Asy = F (s, at)
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Policy Learning

The action-value function (Q-function) represents expected discounted cost for
each action-state pair,

Q(st,ar) = E[c(St41) +ve(Sta2) +¥2c(Ses3) + 1.

The optimal policy is found as:

arpq = 1(Se) = argmin|Q(se, a)]

St = [xt, Zt, Adt, dt,d, Tt]

ar = [vaUZJw]

c(se) = [Ady, dp, T|W.[Ady, dp, 7]
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1] Model-based Gaussian processes Q-learning

Step 1) Predicting a normal distribution over the next state using the
forward model

Asy = F(s¢, a¢)

St41 ~~ N(#'t+1* Et"‘l)
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1] Model-based Gaussian processes Q-learning

Step 1) Predicting a normal distribution over the next state using the
forward model

Step 2) Finding the expected cost for the next state

Eqns,ys[c(s)] = f P les1s Sear)els')ds”
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1 Model-based Gaussian processes Q-learning

Step 1) Predicting a normal distribution over the next state using the
forward model

Step 2) Finding the expected cost for the next state

Step 3) Calculating the expected Q-value over the next state

Esns, 1 |Q(s,a)] = //P(ﬂ-ﬁ!ea«- 0q)p(s|pt+1, Ei41)g ds'dg
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1 Model-based Gaussian processes Q-learning

Step 1) Predicting a normal distribution over the next state using the
forward model

Step 2) Finding the expected cost for the next state

Step 3) Calculating the expected Q-value over the next state

Step 4) Updating Q-function

Q(st,a1) ¢ Bsms,yy[c(s)] + yminEers,,, [Q(s, a)]

il
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Bayesian optimization for optimal decision making

Bayesian optimization
« Optimal action selection
« Staying close to the previous action-state trajectories

b2 | =

Qucep(rt) = my(xe) + 0 (ke (e, x¢))

GP regression

at1 = a.rgmill QUCB(['St? G*D
al*

f(X)+noise

- Safe exploration

» Fast policy learning
« Action selection under uncertainty
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Rational agents

A rational agent

e has clear preferences f
e models uncertainty via expected values of variables or functions of

variables
e chooses actions with the optimal expected outcome for itself from

among all feasible actions (

b=

| Ques(xt) = mu(xe) + 0 (ki (e, 2¢))

at+1 = argmin Quep([st, a*])
aﬂ(

f(X)+noise
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Thanks!

Ali Ghadirzadeh
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