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Background

Target group: third-year students at the Bachelor programme in

Statistics and Data Analysis, Linköping University

Students have a two-year background in frequentist statistics

Challenge: Introduce Bayesian statistics as another way of doing

statistical inference.

Challenge: What di�erence does it make? What can we gain? Can

we learn more about the parameters of interest with Bayesian

inference?

Students need motivated examples of the bene�ts with Bayesian

statistics. Why do we need other tools for statistical inference than

frequentist statistics?
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Bayesian and frequentist inference

Frequentists think of parameters, such as µ in a normal population,

as �xed constants. They would never assign a probability distribution

to µ.

Bayesians may also think of parameters as constants, but may

nevertheless assign a probability distribution to a parameter if they do

not know its (constant) value.

Bayesians add extra (prior) information to statistical inference:

Frequentist : DATA

Bayesian : PRIOR +DATA� POSTERIOR BELIEF

To a Bayesian, probability is subjective.
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The prior - the missing piece of the puzzle

Bayes theorem for continuous variables

p(θ|x1, ...xn) =
f (x1, ..., xn|θ)p(θ)

f (x1, ..., xn)

It is the prior p(θ) that helps to convert the likelihood function

f (x1, ..., xn|θ) into a (posterior) density for θ.

Ignoring the prior is just as wrong as ignoring P(Ai ) in Bayes' theorem

for events

P(Ai |B) =
P(B |Ai )P(Ai )

P(B)
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Questioning the prior

Student: 'But if the prior is subjective, then statistical science is

subjective. That can not be right.'

Bayesian: 'We all have di�erent prior experience and expertise and the

only honest thing is a subjective prior'.

Bayesian: 'The objective part of statistical inference is the updating

from the prior to posterior, which is always done by Bayes' theorem'.

Bayesian: 'A prior can be made minimally informative' (�Objective�).

However, �non-informative priors do not exist�.

Bayesian: 'Non-Bayesian inference is also subjective. The class of

entertained models, choice of signi�cance level, etc are all subjective

choices'.
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Questioning similar results

Student: 'Frequentist and Bayesian inference may give similar

numerical results in a given problem. Why bother about Bayesian

inference?'

Bayesian: 'Interpretations of the results are always di�erent. All

information about probable values of an unknown parameter θ is

included in the posterior distribution.'

Bayesian: 'The likelihood function is the expression

f (X1 = x1, ...,Xn = xn|θ) considered as function of θ. This is NOT
a pdf for θ.’ Hence, ∫

f (x |θ)dx = 1

but in general ∫
f (x |θ)dθ 6= 1

Bayesian: 'So, Likely 6= Probable. What does Likely mean?'
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Credible interval vs con�dence interval

Student: 'My 95 % credible and 95 % con�dence interval are

essentially the same. Why bother about credible interval?'

Bayesian: '95 % credible interval: the probability that the unknown

parameter θ lies in the interval is 0.95.'

Bayesian: '95 % con�dence interval: the interval is stochastic and

does not give any information about the probability of certain intervals

for θ.'
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Motivating example: Bernoulli model

Model

X1, ...,Xn|θ
iid∼ Bern(x |θ)

Prior-Posterior mapping for Bernoulli model with Beta prior

θ ∼ Beta(α, β)
x1,...,xn=⇒

θ|x1, ..., xn ∼Beta(α + s, β + f ),

where s = ∑n
i=1 xi is the number of successes and f = n− s.

George has gone through a part of his company's storage of soft drink

bottles. He observed 6230 type A bottles out of 10000.

Let Xi = 1 if the i:th bottle is a type A bottle. Posterior

θ|x ∼ Beta(α + 6230, β + 3770)

Elicit the prior by asking the expert George probabilistic questions:

E (θ) =?, SD(θ) =? or Pr(θ < c) =?.
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Motivating example: Normal prior and data, known variance

Prior-Posterior mapping for normal model with normal prior

θ ∼ N(µ0, τ2
0 )

x1,...,xn=⇒ θ|x ∼ N(µn, τ2
n ).

Posterior precision:
1

τ2
n

=
n

σ2
+

1

τ2
0

.

Data precision + Prior precision

Posterior mean:

µn = wx̄ + (1− w)µ0,

and

w =
n

σ2

n
σ2

+ 1
τ20

.

Data precision
Posterior precision

(Data mean) + Prior precision
Posterior precision

(Prior mean)
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Motivating example: Poisson model

Prior-Posterior mapping for Poisson model with gamma prior

Model: Y1, ...,Yn|θ
iid∼ Pois(θ)

Prior: θ ∼ Gamma(α, β)

Posterior: θ|y1, ..., yn ∼ Gamma(α + ∑n

i=1
yi , β + n).

Data of number of bomb hits in London: n = 576, ∑n
i=1 yi = 537.

The posterior distribution

p(θ|y) ∝ θα+537−1 exp[−θ(β + 576)]

Posterior summaries

E (θ|y) = α + ∑n
i=1 yi

β + n
≈ ȳ ≈ 0.9323,

and

SD(θ|y) =
(

α + ∑n
i=1 yi

(β + n)2

) 1
2

=
(α + ∑n

i=1 yi )
1
2

(β + n)
≈ (537)

1
2

576
≈ 0.0402.

if α and β are small compared to ∑n
i=1 yi and n.
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Visualizing prior-posterior mapping: bomb hits in London
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Analysis of bomb hits in regions of London − Poisson model with Gamma prior 
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