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Bayesian angle

I Model selection is (increasingly) difficult!
I Introduce priors on models, not only parameters!

My view is that we should focus on physically
plausible models, rather than considering all possible
black box models!
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Prior information is often codes through differential
relations classically described through ODEs and/or PDEs.
Examples where stochastic generalizations have been
successful includes

I Ebola outbreak - generalized SIR model, King et al.
(2015)

I Energy efficiency in houses - thermodynamics, Bacher
et al. (2013)

I Spread of Malaria, Bhadra et al. (2011)
I Wind speed forecasting - physics, Iversen et al. (2016)
I Glucose-insulin-glucagon pharmacodynamics

modelling, Wendt et al. (2017)



Stochastic differential equations
The formally correct generalization of

ODE + White noise (1)

is stochastic differential equations (SDEs)

dX(t) = µθ(t,X(t))dt + σθ(t,X(t))dW(t). (2)

SDEs are Markov processes.

Interpretation of µ and σ:

µθ(t,Xt) = lim
h→0

1
hE [Xt+h − Xt|Ft] (3)

σθ(t,Xt)σθ(t,Xt)
T = lim

h→0

1
hVar [Xt+h − Xt|Ft] (4)
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Bayesian inference

Posterior distribution is given by

p(θ|X⃗) ∝ p(X⃗|θ)p(θ) (5)

Problem is that p(X⃗|θ) is rarely given in closed form.

The transition kernel p(X⃗|θ) =
∏N

n=1 pθ(xtn |xtn−1) can be
approximated using

I PDE methods (Fokker-Planck)
I Monte Carlo

I Pedersen sampler (1995)
I Bridge sampler (2002)
I Lindström sampler (2012)
I Residual sampler (2016)
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Computing the transition density
Combine the law of total probability with Bayes formula
and the fact that diffusions are Markov processes

pθ(xT|x0) =

∫
pθ(xT, xs|x0)dxs =

∫
pθ(xT|xs)pθ(xs|x0)dxs

= E [pθ(xT|xs)|x0] .

Generate empirical version of pθ(xs|x0) using Monte Carlo

pK
θ (xs|x0) =

1
K

K∑
k=1

δ(xs − xk
s ) (6)

resulting in, Pedersen (1995),

p̂θ(xT|x0) =
1
K

K∑
k=1

pθ(xT|xk
s ) (7)



Figure: Example of the simulated maximum likelihood algorithm
introduced by Pedersen (1995) using K = 20 trajectories on a
grid with R = 4 equal intervals



Complexity
In practice, there are two types of errors, discretization and
variance

ϵ = p̂θ(xδT|x0)− pθ(xT|x0)

= p̂θ(xδT|x0)− p̂θ(xT|x0)︸ ︷︷ ︸
Bias

+ p̂θ(xT|x0)− pθ(xT|x0)︸ ︷︷ ︸
Random error

Simulating K Monte Carlo trajectories, time partitioned in
R equal parts (s.t. δ = T/R) gives

I Bias O(1/R)
I Variance O(1/K)
I Mean square error E[ϵ2] is then O(1/R2 + 1/K)
I Computational complexity for RMSE error of O(ϵ) in

O(ϵ−3)

Exact simulation would give a computational complexity
O(ϵ−2)



Complexity
In practice, there are two types of errors, discretization and
variance

ϵ = p̂θ(xδT|x0)− pθ(xT|x0)

= p̂θ(xδT|x0)− p̂θ(xT|x0)︸ ︷︷ ︸
Bias

+ p̂θ(xT|x0)− pθ(xT|x0)︸ ︷︷ ︸
Random error

Simulating K Monte Carlo trajectories, time partitioned in
R equal parts (s.t. δ = T/R) gives

I Bias O(1/R)
I Variance O(1/K)
I Mean square error E[ϵ2] is then O(1/R2 + 1/K)
I Computational complexity for RMSE error of O(ϵ) in

O(ϵ−3)

Exact simulation would give a computational complexity
O(ϵ−2)



Multilevel Monte Carlo

Giles (2008) showed organizing computations in a clever
way reduces complexity. The MLMC method reduces the
cost for obtaining an RMSE of O(ϵ) to O(ϵ−2(log ϵ)2).

The idea is basically control variates, but refined.



Multilevel Monte Carlo

Giles (2008) showed organizing computations in a clever
way reduces complexity. The MLMC method reduces the
cost for obtaining an RMSE of O(ϵ) to O(ϵ−2(log ϵ)2).

The idea is basically control variates, but refined.



Control variates

I Suppose we want to estimate E[X], and that we also
have Y as well as E[Y].

I Define
ξ = X + γ(Y − E[Y]). (8)

Then E[ξ] = E[X].
I γ can be chosen such that the variance is minimized

Var[ξ] = Var[X](1 − ρ2) (9)



Example - fig tree

My sister can grow figs in her garden - Can I grow figs in
my garden?

Estimate the average temperature in my garden, E[X],
given the measurements last year X and the temperatures
Y and average temperature where she lives E[Y].
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Multi Level Monte Carlo

I Compute the expectation as a sequence of correction
terms at levels l = 0, . . . , L

I Denote the approximation at level l by Pl.
I Then ξ is defined as

ξ = P0 +
L∑

l=1
(Pl − Pl−1) (10)

where E[ξ] = E[PL].



Multiple levels

Figure: Multilevel grid example for the Pedersen algorithm. Here
we use L = 3 levels with M = 2. s is indicated by the vertical
line.



MLMC 2

I A naive implementation increases the variance
I However, the variance of each Pl − Pl−1 is very small,

and decays with the step size if the use the same
random elements.

Draw a figure to see this!
I This follows from the strong convergence of the

discretization scheme.
I Both weak and strong rates of converges are

important!
Use Pederson idea in MLMC framework, see (Lindström &
Åkerlindh, 2016)?.



MLMC 2

I A naive implementation increases the variance
I However, the variance of each Pl − Pl−1 is very small,

and decays with the step size if the use the same
random elements. Draw a figure to see this!

I This follows from the strong convergence of the
discretization scheme.

I Both weak and strong rates of converges are
important!

Use Pederson idea in MLMC framework, see (Lindström &
Åkerlindh, 2016)?.



MLMC 2

I A naive implementation increases the variance
I However, the variance of each Pl − Pl−1 is very small,

and decays with the step size if the use the same
random elements. Draw a figure to see this!

I This follows from the strong convergence of the
discretization scheme.

I Both weak and strong rates of converges are
important!

Use Pederson idea in MLMC framework, see (Lindström &
Åkerlindh, 2016)?.



Why does it work?
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Note the difference between different Brownian motions vs.
different schemes/time steps.



Comparison

Keep the bias fixed, while comparing variances

Standard Pedersen

I Cost: KpML

I Variance: σ2/Kp

Multilevel Pedersen

I Cost:∑L
l=0 KlMl = K(L + 1)

I Variance: (L + 1)σ2/K

Equal cost gives K = KpML/(L + 1)

. That leads to

Var[MLMC]
Var[MC] =

(L + 1)2

ML (11)

We are currently working on an improved version that will
make the MLMC estimator even more efficient.
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Comparison

Figure: Theoretical relative variance of standard and multilevel
Pedersen with identical compuational cost and bias.



Simulation study

We consider complete (bivariate) observations from the
Heston (1993) model,

dSt = 0.05Stdt +
√

VtStdW(S)
t (12a)

dVt = 2 (0.04 − Vt)dt + 0.25
√

VtdW(V)
t (12b)

with dW(S)
t dW(V)

t = −0.5dt



Simulation study

I 1000 observations
I Standard Pedersen using Kp = 28 = 256
I Multilevel Pedersen using M = 4 and L = 3
I Ground truth, standard Pedersen using Ktrue = 106

I Compute

VR =

∑N
n=1 (p̂ML(xn|xn−1)− p̂True(xn|xn−1))

2∑N
n=1 (p̂Pedersen(xn|xn−1)− p̂True(xn|xn−1))

2 (13)



Simulation study
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Figure: Relative variance between multilevel and standard
Pedersen. Bootstrapped estimates (boxplot) compared to
theoretical value (solid line).



Parameter estimation

Can be done, but
I The computations provide a point wise estimate

I Can use importance sampling
Simulations indicate that it works fairly well in practice.

I We could also use the Multi-Level Monte Carlo
estimates within an adaptive PMMH algorithm
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Cox-Ingersoll-Ross model

Standard interest rate model until recent years (neg rates)

dr(t) = κ (ξ − r(t))dt + σ
√

r(t)dW(t). (14)

Compare PMMH results
I Exact likelihood (best mixing)
I MC - Pedersen
I MC - Bridge sampler (Durham-Gallant, 2002)
I MLMC - Pedersen

Adaptive MCMC, 2000 iterations as burnin, 2000 additional
iterations.

The simulation used M = 4, L = 2 and Kp = 20.
Prior: All parameters positive and Feller condition holds.
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Path plots for the parameters
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It is known that noisy estimates of the log-likelihood
function degrades the mixing of the simulated parameters.



References I

Bacher, P., Madsen, H., Nielsen, H. A., and Perers, B.
(2013). Short-term heat load forecasting for single
family houses. Energy and buildings, 65:101–112.

Bhadra, A., Ionides, E. L., Laneri, K., Pascual, M., Bouma,
M., and Dhiman, R. C. (2011). Malaria in northwest
india: Data analysis via partially observed stochastic
differential equation models driven by lévy noise. Journal
of the American Statistical Association,
106(494):440–451.

Durham, G. B. and Gallant, A. R. (2002). Numerical
techniques for maximum likelihood estimation of
continuous-time diffusion processes. Journal of Business
& Economic Statistics, 20(3):297–338.

Giles, M. B. (2008). Multilevel Monte Carlo path
simulation. Operations Research, 56(3):607–617.



References II
Giles, M. B. (2015). Multilevel Monte Carlo methods.

Acta Numerica, 24:259–328.
Giles, M. B., Szpruch, L., et al. (2014). Antithetic

multilevel Monte Carlo estimation for multi-dimensional
SDEs without Lévy area simulation. The Annals of
Applied Probability, 24(4):1585–1620.

Heston, S. L. (1993). A closed-form solution for options
with stochastic volatility with applications to bond and
currency options. Review of financial studies,
6(2):327–343.

Iversen, E. B., Morales, J. M., Møller, J. K., and Madsen,
H. (2016). Short-term probabilistic forecasting of wind
speed using stochastic differential equations.
International Journal of Forecasting, 32(3):981–990.



References III
King, A. A., de Cellès, M. D., Magpantay, F. M., and

Rohani, P. (2015). Avoidable errors in the modelling of
outbreaks of emerging pathogens, with special reference
to ebola. In Proc. R. Soc. B, volume 282, page
20150347. The Royal Society.

Lindström, E. (2012). A regularized bridge sampler for
sparsely sampled diffusions. Statistics and Computing,
22(2):615–623.

Lindström, E. and Åkerlindh, C. (2016). Multilevel monte
carlo methods for simulated maximum likelihood
inference in multivariate diffusions. In 9th World
Congress of the Bachelier Finance Society.

Pedersen, A. R. (1995). A new approach to maximum
likelihood estimation for stochastic differential equations
based on discrete observations. Scandinavian journal of
statistics, pages 55–71.



References IV

Rhee, C.-H. and Glynn, P. W. (2015). Unbiased estimation
with square root convergence for SDE models.
Operations Research, 63(5):1026–1043.

Stramer, O. and Yan, J. (2007). Asymptotics of an
efficient Monte Carlo estimation for the transition
density of diffusion processes. Methodology and
Computing in Applied Probability, 9(4):483–496.

Wendt, S. L., Ranjan, A., Møller, J. K., Schmidt, S.,
Knudsen, C. B., Holst, J. J., Madsbad, S., Madsen, H.,
Nørgaard, K., and Jørgensen, J. B. (2017).
Cross-validation of a glucose-insulin-glucagon
pharmacodynamics model for simulation using data from
patients with type 1 diabetes. Journal of Diabetes
Science and Technology, page 1932296817693254.



Contact details
I Erik Lindström — erik.lindstrom@matstat.lu.se

mailto:erik.lindstrom@matstat.lu.se



	Introduction - Diffusion processes
	Multilevel Monte Carlo
	Analysis
	Simulation study
	References

