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Proteins in the post-genomic wild west
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m Sequences spectacularly outnumbers structures!.

m The quest for methods to routinely predict, simulate or design
protein structure, dynamics and interactions continues.
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Today's menu - some protein with maths
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Introduction

This talk concerns “the extraction of a force field from a data
base of known 3D structures, which reasonably models the
protein-solvent system” (Sippl, 1993). Such force fields or energy
functions are also important for modelling protein interactions.
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Protein folding and its forces

Hydrophobic interactions
(clustering of hydrophobic
groups away from water) and
van der Waals interactions
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Energy
functions

m Electrostatic, hydrogen bonding, hydrophobic, van der Waals
and repulsive forces shape proteins into their 3-D folds?.

m How can we derive information on these energies from the set of
known protein structures in a well-defined way?

2picture: https://www.khanacademy.org
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Knowledge-based energy functions
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Hamelryck PDB i Energies

Energy
functions

Gurrant Opinion in Structural Biokogy

m Knowledge based energies are attractive because they can be
efficiently applied to simplified representations of proteins.

m They aim to approximate the free energy.

3Picture: Boas & Harbury, Curr. Opinion Struct. Biol., 2007
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Turning probabilities into energies
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with k the Boltzmann's constant, T the absolute temperature
and Z a normalization factor (Zustandssumme).

Sippl's idea
m Hence, the inverse of Boltzmann’s law turns probabilities into

energies,
ex = —kT log (px) — kT log(2).

m The main problem is that Z cannot be calculated for most
practical cases.
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Manfred Sippl's bright idea (1990)
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and subtracts a so-called reference energy &,,

Ex = —kT log (Px) — kT log(Z),

Sippl's idea

where P, is the probability of microstate x and Z is the
normalisation factor according to a certain reference state,

e £ P Z
Ne,=e— &= kTIog(Px> kTIog<Z>.

m Now, if we assume that % ~ 1, the second term disappears.
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Sippl’'s knowledge based energy for proteins
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Sippl's idea m Following Sippl, the total energy of a protein conformation is,

Ae = Z —kT log (;;X) ,

where the sum runs over all pairwise distances.
m The reference state is some random packing of amino acids.

m For the 2D toy protein, p, = p(distance r | colors involved).
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Justification by fuzzy analogy
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m The reversible work required to bring two liquid particles from
infinite separation to a distance r from each other is

Sippl's idea Wr — kT |Og <%)

r

where p, and P, are the probabilities of finding two particles at
a distance r in the liquid and the reference state.

m The reference state is precisely defined as the ideal gas state,
consisting of non-interacting particles.

m W, is a so-called potential of mean force.
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Sippl in trouble

Potentials of . . ) A
mean force for m Sippl’s idea is based on some shaky assumptions.
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structure
St . .
fram hack to Applying Boltzmann’s law is unwarranted.
math

- m The probablities do not come from a single protein’s Boltzmann
Hamelryck distribution, but from structures of many different proteins
from the Protein Data Bank (PDB).

Calling these energies potentials of mean force based on a
S vague analogy with some physics of liquids is unwarrenated.
Tl il

m It's not clear at all what to use as reference state.

m People hack around and use what works.

Even if Sippl's energy was a true potential of mean force, it
would not be the desired free energy.

m So why does Sippl's hack actually work, and is it optimal? To
answer that question, we will need to turn to the world of
Bayesian probability.
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Jeffrey's
conditioning

Bayesian probability — a primer

REPUBLIQUE FRANCAISE

m Bayesian reasoning consists of updating a current belief on
parameter 6 in the light of new data d.

m The current belief is quantified as the prior distribution 7(6).
m The data is quantified as the likelihood p(d | 9).
m The updated belief is quantified as the posterior distribution

p(61d) x p(d]6)xm(6)
posterior o< likelihood X prior

11/33



Bayes in trouble
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Example

m Suppose we obtain data d concerning a parameter . Using the
standard Bayesian calculus, we update the prior over 6 by
multiplication with the likelihood of d,

Thomas
Hamelryck

Jeffrey's

conditioning

p(0 ] d) o p(d | ) x 7(6).

m Suppose we are given information Z = p(6 > 0) = ¢ instead.

m How do we update 7(0)?

p(0|Z) x ?xm(0).
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Whitworth's horses (1901)

Potentials of
mean force for
protein
structure
prediction:
from hack to
math

m Suppose four horses A, B, C, D have equal probability of
winning in a race (p = 0.25).

e ing m However, the probability of A winning is updated to 0.4.
m How can the individual probabilities of B, C or D winning be
updated?

m The probability of B, C or D winning is 1 — 0.4 = 0.6
m Assuming they still have equal probability of winning, we obtain

p(B wins) = p(C wins) = p(D wins) = 0.6/3 = 0.2
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Whitworth's horses and partitions
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m The probabilities changed from (0.25,0.75) to (0.4,0.6).

m We assume that the conditional probabilities of B, C, D
winning remain the same

Jeffrey's

conditioning p(A loses) — changes from 0.75 to 0.6
p(B wins | A loses) — remains the same at 1/3
= p(B wins | A loses)p(A loses) = ? =02

m In other words, the relative probabilities of the elements within
the partitions remain the same.
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Jeffrey's conditioning

b of , T e 1s .
moan rf,r_:'e for m Jeffrey’s conditioning or probability kinematics allows
S Bayesian updating of a prior m(6) given new information on a

prediction:
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m We have a prior distribution 7(6) with matching 7(E;).

Thomas
Hamelryck

m We obtain new information on 6 in the form of updated
. probabilities p(E;). How do we update () to p(6)?
Jeffrey's

conditioning m If we assume the conditional probabilities remain the same, that
is w(0 | E;) = p(0 | E;) for all (i,0), then

w(0) = m(0| Eg)m(Ep)
= p(0) = (0| Ep)p(Es)

with Ey being the partition that contains 6.
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Jeffrey reframed - The reference ratio
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from hack to is not available. It will also shed light on Sippl’s energy.

math
The reference ratio formulation

m We start with the usual formulation of Jeffrey’s conditioning

p(0) = m(6 | Eo)p(Eo)

Thomas
Hamelryck

g and apply Bayes' theorem to the first factor
m(Ey | 0)(6)
0) = ————"—"p(E
p(0) (e
P(Ep)
= p(fd) = (6
o) = L)

4Hame|ryck et al., PLoS ONE, 2010
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Back to the races
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m The reference ratio formulation of Jeffrey's conditioning is

et p(0) = 522;%(9)'

conditioning

m Applied to Whitworth's horses, this becomes

. p(A loses .
p(B wins) = WW(B wins)
0.6
575 % 025=0
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A local model of protein structure as prior
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Sippl revisited

m Suppose we have a prior distribution 7(x) over the backbone
angles x of a protein, and that this distribution is only valid on
a local length scale.
m Baker's ROSETTA program pioneered the use of a fragment
library as m(x).
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Adding a global model using Jeffrey's trick

Potentials of
mean force for

i m The local model could be salvaged by adding a second model

structure
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Thomas

Tk m As global model, we use a probability distribution p(d) over the
pairwise distances d.

m We can assume d = f(x), that is, if we know the angles we can
calculate the pairwise distances.

m d = f(x) is many-to-one, and thus d induces a partition on Q.

m Thus, we can combine the local with the global model using
Jeffrey's conditioning,

Sippl revisited

px) = Zgha).

following the reference ratio formulation.
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Sippl's energy explained
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m If we formulate this model in terms of energies, using a
minus-log transformation, we get

e(x) = —kT log (pgd;) — kT log(m(x))

Sippl revisited which leads us to Sippl’s “potential of mean force”.

m The reference distribution is defined by the local model 7(x).
m The last term is usually “invisible” because it is brought in by
sampling, ie. using a fragment library.

m Thus, Sippl’s “potentials of mean force” can be understood as
an approximation of Jeffrey's conditioning.
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A Bayesian model of protein structure

Potentials of
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protein

structure divide-and-conquer strategy for Bayesian protein structure
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math

Thormas m Estimate a model 7(x | a) that covers local protein structure

Hamelryck

m x=sequence of dihedral angles, a=amino acid sequence
m This model is high-dimensional and detailed but not accurate
on the global scale.
m Estimate a model p(y | @) that covers nonlocal protein structure

m With y = f(x), that is, y is a low-dimensional, many-to-one
deterministic function of x
Bayesian model m This model is accurate on the global scale but without detail.

m Tie the two together using probability kinematics

| a)

a (

Bl (x| a)
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Model of local protein structure
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A EIO G FEE

m Typically, the local model consists of a fragment library that

Bayesian model models the backbone angles (¢, ).

m We formulated a probabilistic model, based on a hidden Markov
model, that relates the amino acid sequence a to the dihedral
angles sequence x = (¢, 1), using a bivariate von Mises
distribution on the torus®.

5Boomsma et al., PNAS, 2008 & 2014.
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Model of nonlocal protein structure

Hydrophobic interactions
(clustering of hydrophobic
groups away from water) and
van der Waals interactions.
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m As a statistical descriptor of nonlocal structure, y = f(x), we
use a vector of five physical energies.

m Hydrogen bond energy in helices, strands and coils
m Hydrophobic energy and electrostatic energy (ionic bonds)

m p(y |a) is a multivariate Gaussian distribution (obtained using
Bayesian Deep Learning®).

Bayesian model

S\Work in progress!
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The resulting posterior - summary
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resulting posterior is

a
Wi p(x [a) = mﬂ(x | a)

ply | a)
(¥
m The nonlocal model p(y | a) is a 5-dimensional Gaussian that
models hydrogen bonding, electrostatic interactions and the
hydrophobic effect.
m The local model (x| @) is a hidden Markov model that models
the (¢, 1) angles.
m These models are easy to estimate and computationally efficient.
m The posterior is valid on both the local and nonlocal scale.

Bayesian model

m However, often the estimation of 7(y | @) forms a serious
bottleneck.
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Variational reference ratio |

Potentials of
mean force for

N m In order to avoid the direct estimation of 7(y | a), we use a

structure

prediction: . . .
from hack to Gaussian approximation

math
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p(x|a) = 5 Ta) (x|a)
N(y | p,Z)m(x | a)

q(x |a,pu, X))

Q

m The parameters of the Gaussian are estimated by minimizing
the following Kullback-Leibler divergence

Variational arg ’n;“g DKL (q(y | a, i, Z‘) || p(y | a))

approach

m This reminds of Variational Bayes estimation.
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Variational reference ratio |l
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Thomas ..
Hamelryck m Choose an initial value (g, Xo)

m Assign weights to the samples equal to N (y; | pg, Xo)
m with yi = f(X,’)
m Starting from (g, Xo), use the downhill simplex method to find

(y,X1) = arg (Tig) Dxw (q(y [a) || p(y | a))

Variational
approach

m We need a method to compute the KL divergence between a
Gaussian and a set of weighted samples.
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Variational reference ratio Ill

Potentials of
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coractune between a Gaussian and a set of weighted samples.
prediction:
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Thomas N(yi | H, Z)
e el m The KL divergence is minimized in function of p, ¥

m We write Dkr,(p || g) in terms of the cross- and
differential-entropy.

Dkr(gllp) = Sc(al p)—Sp(q)

m The cross entropy C can be readily calculated as

Variational c(q |l p) Z w; log p(y; | @)

approach

m The differential entropy Sp can be approximated using a
nonparametric nearest neighbor estimator’.
7Ajgl and Simandl (2011)
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m 20 amino acids, Ca root mean square deviation=0.5 A.
m Native structure in dark grey; prediction (using native energy) in

light grey.
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Example: Trp-Cage Miniprotein |l
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structure 018 — 7 020—————————————— 08—
prediction: r 1 Prior
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Tho.inask 0.12 05
Hamelryc 010
0.10} 0.4
0.08
0.06 03
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0.00 . 0.00 . 0.0 -
-35-30-25-20-15-10 -5 0 -40-35-30-25-20-15-10 -5 01 2 3 4 5 6 7
Hydrophobic energy Helix hydrogen bond energy rmsd

m Dashed black=target energy; Red=simulation using prior alone.

m Blue=p(y | a)m(x | @), which amounts to assuming
Example: independence of x and y.

Trp-Cage
m Green=VRR solution, N(y | p, X)7(x | a).
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Example: Trp-Cage Miniprotein Il
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m Dashed black=target energy; Purple=simulation using energy.
m Even though the energy is useful as a descriptor of nonlocal

Example:

Trp-Cage structure, the protein cannot be folded using the energy itself.
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Implications and outlook
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Pl Scholar results in 3000+ hits.

math

S m After more than 25 years of heated discussion about Sippl's
Hamelryck potentials, we finally know why they work — they approximate
Jeffrey’s conditioning.

m The reference state is defined by the local model.
m No more need to hack the reference state.
m These energies generalize beyond pairwise distances.

m Jeffrey's conditioning opens the way to new, well-justified
energy functions.

m Jeffrey's conditioning allows us to formulate a complete
probabilistic model of proteins in atomic detail, for the first
time.

Conclusions
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Thank you

Potentials of
mean force for
protein
structure
prediction: DET FRIE
from hack to FORSKNINGSRAD
math DANISH COUNCIL
FOR INDEPENDENT
RESEARCH

THE VELUX FOUNDATIONS

VILLUM FONDEN 3< VELUX FONDEN

m Wouter Boomsma, KU

m Jesper Ferkinghoff-Borg, DTU

m Jesper Foldager, KU

m Jes Frellsen, KU="We rediscovered Jeffrey’'s conditioning!”
m John Haslett, Trinity College, Dublin, Ireland

m John T. Kent, Kanti V. Mardia, Leeds, UK

Goreltrriers m Douglas Theobald, Brandeis, USA

m Dedicated to Richard Jeffrey (1926 — 2002)
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