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A simple data generation 
process

Example: 

Reading time in milliseconds 

Imagine a simple data generation process

yi ⇠ LogNormal(µ,�2) i = 1, . . . , N
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Comparing means from two conditions 
in reading time data
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Comparing means from two conditions 
in reading time data

             

    

               

Option 1: A simple linear regression:

Estimate SE

Intercept 6.1 0.03

x -0.08 0.05

yi
iid⇠ LogNormal(�0 + �1xi,�

2
)

xi is coded + 1/2 or � 1/2
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Comparing means from two conditions 
in reading time data

             

Option 2: A hierarchical regression:

�̂1 is the estimated difference in means

yjk ⇠ LogNormal(�0 + �1xjk + bj + ck,�
2
)

xjk is coded ± 0.5

bj ⇠ Normal(0,�

2
b ) ck ⇠ Normal(0,�

2
c )

j: subject, k: items
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Comparing means from two conditions 
in reading time data: 
A concrete example

             

               

a. The nurse who the doctor scolded resigned

b. The nurse who the doctor from the clinic scolded resigned

Mean reading times at resigned are longer in b vs a. Why?
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Two theories about 
dependency completion

             

               

Theory 1: Decay in working memory
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The decay model as a 
hierarchical linear model
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estimates the  
difference in means 
�̂1

yjk ⇠ LogNormal(�0 + �1 + bj + ck,�
2)
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Two theories about 
dependency completion

             

               

Theory 2:Direct-access model

9



The direct-access model as 
a mixture process

yjk ⇠p1 · LogNormal(µ0
jk,�

2
0 )+

(1� p1) · LogNormal(µjk,�
2))
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The direct-access model as a mixture 
process 

(also see: Nicenboim & Vasishth, StanCon 2017)
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p1LogN(·, ·)+
(1� p1)LogN(·, ·)

p2LogN(·, ·)+
(1� p2)LogN(·, ·)

Expected: p1 > p2
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Implementing both models 
in Stan

Decay model

Direct-access model

yjk ⇠p1 · LogNormal(µ0
jk,�

2
0 )+

(1� p1) · LogNormal(µjk,�
2))

yjk ⇠ LogNormal(�0 + �1x+ bj + ck,�
2)

yjk ⇠p2 · LogNormal(µ0
jk,�

2
0 )+

(1� p2) · LogNormal(µjk,�
2))
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mc-stan.org

http://mc-stan.org


Research question

Which of the decay model and the direct-access 
model characterises the data better? 
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Four steps needed

• Step 1: Use fake data to validate mixture model 

• Step 2: Estimate parameters of mixture model 
from real data 

• Step 3: Compare mixture model to hierarchical 
model 

•Step 4: Repeat steps 2,3 using new real data. 
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Step 1: Validation of model using fake-data 
simulation 

(does mixture model recover parameters?)

• Generate fake data with fixed parameter values for 
mixture distribution. 

• Plot posterior distributions and determine whether 
true parameters lie within 95% credible interval.

Method
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Mixture probabilities: 
parameters (fake data)

p1

0.1 0.2 0.3 0.4 0.5

p1

p2
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p2
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beta

5.7 5.8 5.9 6.0

beta

beta2

6.50 6.75 7.00 7.25

beta2

sigma_e

0.21 0.24 0.27 0.30

sigma_e

sigma_u

0.2 0.3 0.4

sigma_u

sigma_w

0.1 0.2 0.3

sigma_w



Step 2: Estimate mixture 
probabilities: parameters (real data)
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Step 3: Model comparison  
(Vehtari et al 2016)

• To compare models, we compare predictive 
performance of each model.  

• We use an approximation of leave-one-out cross-
validation (Pareto-smoothed importance sampling). 

• Expected log pointwise density (epld) is a measure 
of predictive accuracy.  

• Higher elpd implies better predictive performance. 

HLM vs Mixture ELPD difference: 147.6 (17.2)   
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Step 4: Do we obtain the 
same results with new data?

ELPD diff: 156.3 (28.9) 

p1

p2

diffprob

0.0 0.2 0.4

Replication data

ELPD diff: 147.6 (17.2) 
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Conclusion
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Conclusion

The evidence for the direct-access model  
is stronger than for the decay model.  

Full paper: http://arxiv.org/abs/1702.00564 
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http://arxiv.org/abs/1702.00564


Conclusion
Other evidence consistent with  
direct-access model: 

Nicenboim & Vasishth, StanCon 2017 

Video, code: 
http://bit.ly/NicenboimVasishthStanCon2017  
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Conclusion
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Conclusion
I hope that I at least convinced you to take a look 
at Stan for Bayesian modeling. 

It’s a powerful framework for building process models 
and thinking in terms of the generative process  
underlying your data. 

We will teach a one-day Stan tutorial in Tübingen,  
Sept 17, 2017: http://fgme2017.de/
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