SCHATTEN-VON NEUMANN PROPERTIES OF WEYL OPERATORS OF HÖRMANDER TYPE

JOACHIM TOFT

Let \(t \in \mathbb{R} \) be fixed and consider the pseudo-differential operators \(\text{Op}_t(a) \) with symbol \(a \) which is defined by the formula:

\[
\text{Op}_t(a)f(x) \equiv (2\pi)^{-n} \int_{\mathbb{R}^n \times \mathbb{R}^n} a((1-t)x + ty, \xi) e^{i(x-y, \xi)} dyd\xi
\]

It is well-known that if \(0 \leq \delta < \rho \leq 1 \) and \(r \in \mathbb{R} \), then each \(\text{Op}_t(a) \) with \(a \in \text{S}^r_{\rho, \delta}(\mathbb{R}^{2n}) \) is \(L^2 \)-continuous, if and only if \(\text{S}^r_{\rho, \delta}(\mathbb{R}^{2n}) \subseteq L^\infty \) (i.e. \(r \leq 0 \)). Here \(\text{S}^r_{\rho, \delta}(\mathbb{R}^{2n}) \) consists of all \(a \in C^\infty(\mathbb{R}^{2n}) \) such that

\[
|\partial_\alpha x \partial_\beta \xi a(x, \xi)| \leq C_{\alpha, \beta}(1 + |\xi|)^{r-\rho|\beta|+\delta|\alpha|}.
\]

More recently, results which are focused on "individual symbols" instead of whole symbol classes can be found in e.g. [1], from which it follows that if \(a \in \text{S}^r_{\rho, \delta} \) for some \(r \), then \(\text{Op}_t(a) \) is \(L^2 \)-continuous, if and only if \(a \in L^\infty \).

The general theory involving these results, is formulated within the Hörmander-Weyl calculus, where the symbol classes \(\text{S}(m, g) \) are parameterized with weight functions \(m \) and Riemannian metrics \(g \). The continuity investigations also involve Schatten properties. Especially, the following general result is deduced: Let \(p \in [1, \infty] \), and assume that the \(g \)-Planck’s function \(h_g \) satisfies \(h_g^N m \in L^p \), for some \(N \geq 0 \). Then \(\text{Op}_t(a) \) is a Schatten-\(p \) operator, if and only if \(a \in L^p \).

Recently, a related result was obtained also when \(p \leq 1 \). More precisely, in [2] it is proved that if \(p \in (0, 1] \), \(m \in L^p \) and \(a \in \text{S}(m, g) \), then \(\text{Op}_t(a) \) is a Schatten-von Neumann operator of order \(p \).

In the talk we explain these results with explicit examples, and present some ideas of some proofs.

Department of mathematics, Linnaeus University, Sweden, joachim.toft@lnu.se