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Foreword

This is a tutorial for how to use the MATLAB toolbox WAFO for analysis and simulation
of random waves and random fatigue. The toolbox consists of a number of MATLAB m-
files together with executable routines from FORTRAN or C++ source, and it requires only a
standard MATLAB setup, with no additional toolboxes.

A main and unique feature of WAFO is the module of routines for computation of the
exact statistical distributions of wave and cycle characteristics in a Gaussian wave or load
process. The routines are described in a series of examples on wave data from sea surface
measurements and other load sequences. There are also sections for fatigue analysis and for
general extreme value analysis. Although the main applications at hand are from marine and
reliability engineering, the routines are useful for many other applications of Gaussian and
related stochastic processes.

The routines are based on algorithms for extreme value and crossing analysis, developed
over many years by the authors as well as many results available in the literature. References
are given to the source of the algorithms whenever it is possible. These references are given
in the MATLAB-code for all the routines and they are also listed in the last section of this
tutorial. If the references are not used explicitly in the tutorial; it means that it is referred to
in one of the MATLAB m-files.

Besides the dedicated wave and fatigue analysis routines the toolbox contains many sta-
tistical simulation and estimation routines for general use, and it can therefore be used as
a toolbox for statistical work. These routines are listed, but not explicitly explained in this
tutorial.

The present toolbox represents a considerable development of two earlier toolboxes, the
FAT and WAT toolboxes, for fatigue and wave analysis, respectively. These toolboxes were
both Version 1; therefore WAFO has been named Version 2. The routines in the tutorial are
tested on WAFO-version 2.5, which was made available in beta-version in January 2009 and
in a stable version in February 2011.

The persons that take actively part in creating this tutorial are (in alphabetical order): Per
Andreas Brodtkorb1, Pär Johannesson2, Georg Lindgren3 , Igor Rychlik4.

1Norwegian Defense Research Establishment, Horten, Norway.
2SP Technical Research Institute, Borås, Sweden.
3Centre for Mathematical Sciences, Lund University, Sweden.
4Mathematical Sciences, Chalmers, Göteborg, Sweden.
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Many other people have contributed to our understanding of the problems dealt with in
this text, first of all Professor Ross Leadbetter at the University of North Carolina at Chapel
Hill and Professor Krzysztof Podgórski, Mathematical Statistics, Lund University. We would
also like to particularly thank Michel Olagnon and Marc Provosto, at Institut Français de
Recherches pour l’Exploitation de la Mer (IFREMER), Brest, who have contributed with
many enlightening and fruitful discussions.

Other persons who have put a great deal of effort into WAFO and its predecessors FAT
and WAT are Mats Frendahl, Sylvie van Iseghem, Finn Lindgren, Ulla Machado, Jesper Ryén,
Eva Sjö, Martin Sköld, Sofia Åberg.

This tutorial was first made available for the beta version of WAFO Version 2.5 in Novem-
ber 2009. In the present version some misprints have been corrected and some more examples
added. All examples in the tutorial have been run with success on MATLAB up to 2010b.

Lund and Horten March 28, 2011



Technical information

• In this tutorial, the word WAFO, when used in path specifications, means the full name
of the WAFO main catalogue, for instance

C:/wafo25

• The MATLAB code used for the examples in this tutorial can be found in the WAFO

catalogue

WAFO/papers/tutorcom/

The total time to run the examples is about one hour on a 64 bit, 2.93 GHz PC
running Windows 7 and more than three hours on a 32 bit 2.2 GHz PC with Win-
dows XP.

• WAFO is built of modules of platform independent MATLAB m-files and a set of
executable files from C++ and Fortran source files. These executables are platform
and MATLAB-version dependent, and they have been tested with recent MATLAB and
WINDOWS installations.

• If you have many MATLAB-toolboxes installed, name-conflicts may occur. Solution:
arrange the MATLAB-path with WAFO first.

• WAFO Version 2.5, was released in beta version in January 2009 and in stable version
in February 2011, and it can be downloaded from

http://code.google.com/p/wafo/

Older versions of the toolbox can be downloaded from the WAFO homepage

http://www.maths.lth.se/matstat/wafo/

There you can also find links to exercises and articles using WAFO, and notes about its
history.

• For help on the toolbox, write help wafo25. Note, that in Windows, some of the
routines in Chapter 4 do not work with MATLAB 2006 or earlier.

• Comments and suggestions are solicited — send to

wafo@maths.lth.se
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�ij Correlation between random variables Xi and Xj.
� Covariance matrix.
�2

X Variance of random variable X .
� Shift variable of time.
�i Parameters defining the eigenvalues of�.
� Wave angular frequency [rad/s].
�p Wave angular peak frequency [rad/s].
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Abbreviations

AMISE Asymptotic mean integrated square error.
CDF Cumulative distribution function.
FFT Fast Fourier Transform.
GEV Generalized extreme value.
GPD Generalized Pareto distribution.
HF High frequency.
ISSC International ship structures congress.
ITTC International towing tank conference.
IQR Interquartile range.
KDE Kernel density estimate.
LS Linear simulation.
MC Markov chain.
MCTP Markov chain of turning points.
ML Maximum likelihood.
NLS Non-linear simulation.
MISE Mean integrated square error.
MWL Mean water line.
PDF Probability density function.
PSD Power spectral density.
QTF Quadratic transfer function.
SCIS Sequential conditioned importance sampling.
TLP Tension-leg platform.
TP Turning points.
WAFO Wave analysis for fatigue and oceanography.
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CHAPTER 1

Introduction to WAFO

1.1 What is WAFO?

WAFO (Wave Analysis for Fatigue and Oceanography) is a toolbox of Matlab routines for sta-
tistical analysis and simulation of random waves and random loads. Using WAFO you can, for
example, calculate theoretical distributions of wave characteristics from observed or theoreti-
cal power spectra of the sea or find the theoretical density of rainflow cycles from parameters
of random loads. These are just two examples of the variety of problems you can analyze
using this toolbox.

There are three major audiences to which this toolbox can have a great deal of appeal.
First, ocean engineers will find a comprehensive set of computational tools for statistical anal-
ysis of random waves and ship’s responses to them. Second, the toolbox contains a number of
procedures of prime importance for mechanical engineers working on random loads or damage
and fatigue analysis. Finally, any researcher who is interested in statistical analysis of random
processes will find an extensive and up-to-date set of computational and graphical tools for
her/his studies.

In a random wave model, like that for Gaussian or transformed Gaussian waves, the
distribution of wave characteristics such as wave period and crest-trough wave height can
be calculated with high accuracy for almost any spectral type. WAFO is a third-generation
package of MATLAB routines for handling statistical modelling, calculation and analysis of
random waves and wave characteristics and their statistical distributions. The package also
contains routines for cycle counting and computation in random load models, in particular
the rainflow counting procedure often used in fatigue life prediction.

Random wave distributions are notoriously difficult to obtain in explicit form from a
random wave model, but numerical algorithms, based on the so-called regression approxima-
tion, work well. This method to calculate wave distributions is the only known method that
gives correct answers valid for general spectra. The theoretical background is reviewed in [35]
and computational aspects and algorithms in [59].

The algorithms are based on a specification of the random waves by means of their (uni-
directional or directional) spectrum, and on the underlying assumption of linear wave theory

1
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and Gaussian distribution. However, a transformation of sea elevation data can be made to
obtain a desired (horizontal) asymmetric marginal distribution.

A first complete toolbox appeared 1993, called the Fatigue Analysis Toolbox (FAT), [16].
It was followed by the Wave Analysis Toolbox (WAT1) in 1995, written by Rychlik and Lind-
gren, [60], being extended with routines for probabilistic modelling problems in oceanogra-
phy. In WAFO, many new numerical routines were introduced, and a considerable improve-
ment in computational speed and accuracy was achieved. WAFO allows treatment of more
complicated problems; for example, spatial waves with time dynamics can be handled, thus
extending the analysis to random fields. Algorithms for rainflow analysis of switching Markov
chains are included, as well as for decomposition of the rainflow matrix. Many of the new
tools are the result of recent research, e.g. [57], [49], [48], [26], and [9].

WAFO, version 2.5, which appeared in beta-version January 2009, and in stable version
February 2011, contains a great number of general statistical routines, making the toolbox
useful also for statistical analysis and computation in many other areas than marine and
mechanical engineering; see help statistics.

Further, WAFO has a modular structure, so users can easily add their own algorithms for
special purposes. The modules of the toolbox handle

• wave/load data analysis and estimation,

• spectral distributions,

• transformation to Gaussian marginals and calculation of exact distributions,

• simple parametric approximations to wave characteristic distributions,

• simulation of Gaussian and Markovian wave/load time series,

• extreme value and other statistical analysis,

• cycle counting,

• rainflow cycle analysis and calculation,

• fatigue life calculation,

• smoothing and visualization,

• general statistical analysis and computation.

In the following section, we discuss in more detail the idea of the modular structure.
That section is followed by an overview of the organization of WAFO, presenting some of the
capabilities of the toolbox. Finally, we give a number of examples to demonstrate the use of
some of the tools in WAFO for analysis and modelling.

1.2 Philosophy – some features of WAFO

A common problem with research involving complex scientific (numerical) computations is
that when researchers try to advance and leverage their colleagues work, they often spend a
considerable amount of time just reproducing it.

Often after few months since the completion of their own work, authors are not capable
of reproducing it without a great deal of agony, due to various circumstances such as the

1http://www.maths.lth.se/matstat/staff/georg/watinfo.html

http://www.maths.lth.se/matstat/staff/georg/watinfo.html
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loss of the original input data or/and parameter values etc. Thus many scientific articles are
reproducible in principle, but not in practice.

To deal with this and to organize computational scientific research and hence to con-
veniently transfer our technology, we impose a simple filing discipline on the authors con-
tributing to the WAFO-toolbox. (A positive side effect of this discipline is a reduced amount
of errors which are prone to occur in computational science.)

This philosophy is adopted from the article by Matthias Schwab et al “Making scientific
computations reproducible”,

http://sepwww.stanford.edu/research/redoc/.
The idea is to develop reproducible knowledge about the results of the computational

experiments (research) done at Lund University and to make it available to other researchers
for their inspection, modification, re-use and criticism.

As a consequence, WAFO is freely available through the Internet2. Other researchers can
obtain the MATLAB code that generated figures in articles and reproduce them. They can
if they wish modify the calculations by editing the underlying code, input arguments and
parameter values. They can use the algorithms on other data sets or they can try their own
methods on the same data sets and compare the methods in a fast and easy fashion.

This is the reason of existence for the WAFO/papers directory, which contains subdirec-
tories including scripts for recreating figures in published articles and technical reports. Each
article has its own subdirectory. The directories contain demonstration scripts to generate in-
dividual figures and (possibly) specialized tools/functions not available in the official release
of WAFO for generating these figures.

Just like the WAFO/papers directory the WAFO/wdemos directory also contains different
subdirectories with scripts producing figures. The only difference is that these do not repro-
duce figures from published articles but merely test and demonstrate various methodologies,
highlight some features of WAFO, and release code that approximately reproduces figures in
other articles. The important thing for both directories is not the printed figures, but the
underlying algorithm and code. In addition, the papers and wdemos scripts constitute an
excellent starting point for the novel user to learn about WAFO.

The documentation directory WAFO/docs contains all the documentation available for
the toolbox. The contents of any of these files may be examined by typing its name for
ascii files or viewing in ghostview for postscript files. Also each function is well documented
containing a help header describing how the function works with a detailed list of input and
output arguments with examples of how to use the function.

The Matlab code to each function file also contains references to related functions and a
complete reference to published articles from which the user can obtain further information
if such exist.

One important enhancement of the toolbox is the use of structure arrays, introduced in
MATLAB, Version 5, by which several types of data can be stored as one object. This sig-
nificantly simplifies the passing of input and output arguments of functions and also makes
the MATLAB workspace much tidier when working with the new toolbox compared to the
old one. Three structures or object classes are implemented and extensively used: the spec-

2http://code.google.com/p/wafo/

http://sepwww.stanford.edu/research/redoc/
http://code.google.com/p/wafo/
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trum structure, covariance structure and probability density function (hereafter denoted pdf )
structure. The toolbox is portable to any computational environment that supports MAT-
LAB, such as Linux, Unix or PC with MS Windows. See Section 1.5 for a description of
the datastructures in WAFO. Note that this tutorial uses the command naming convention
introduced in WAFO, Version 2.5.

All the files in the package are located in subdirectories under the main directory. The
following directories are related to what has been discussed above. In the next section, we
describe in more details the directories (or modules) which contain routines for application.

WAFO is the main directory containing different directories for the WAFO software, datasets
and documentation.

WAFO/docs contains the documentation for the toolbox in ascii and postscript format.

WAFO/papers is a subdirectory including scripts for reproducing figures in various articles
and technical reports.

WAFO/wdemos contains different demonstrations that illustrate and highlight certain aspects
of WAFO.

WAFO/data contains datasets used in the demo and paper scripts.

WAFO/source contains mex and Fortran source files.

WAFO/exec/... contains Fortran compiled executables for different platforms.

1.3 Organization of WAFO

In this section, we make a brief presentation of each module. The text will not be a complete
list of routines; such a list may be found at the web site for WAFO. We want to emphasize
that all routines in WAFO work together – the division into sub-toolboxes is only to make it
easier for the user to find the routines for the actual problem.

Data analysis

The routines in this category treat data in the form of time series. As examples of routines,
we find procedures for extraction of so-called turning points, from which troughs and crests
may be obtained, as well as procedures for estimation of autocovariance function and one-
sided spectral density. One routine extracts wave heights and steepnesses. Numerous plotting
routines are included.

Spectrum

Computation of spectral moments and covariance functions, given a spectrum, is a neces-
sary step for calculation of exact probability distributions of wave characteristics. The spec-
trum structure mentioned in the previous section allows this calculation to be performed
for directional spectra as well as encountered spectra. We present routines for calculations of
commonly used frequency spectra S(�), e.g. JONSWAP and Torsethaugen. The spectra can
be expressed in frequency as well as wave number. Libraries of spreading functions D(�), in
some cases allowed to be also frequency dependent, cf. [27], are included.
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Transformed Gaussian processes

WAFO is mainly intended to model linear, Gaussian waves. For this category of waves, the
exact distributions of wave characteristics can be calculated, given a spectrum; for example

• pdf for wavelength (period),

• joint pdf for wavelength (period) and amplitude,

• joint pdf of half wavelengths.

Routines for transformed Gaussian processes, cf. [57], are included. Contrary to what is often
stated in the technical literature, these routines are very efficient and accurate and they can
be used for engineering purposes; cf. [41, Sec. 4.4.1].

Wave models

In WAFO, we have implemented certain models for distributions of wave characteristics
found in the literature. For example, one finds

• approximations of the density of crest period and amplitude, (Tc, Ac), in a stationary
Gaussian transformed process proposed in [13], and [38],

• a model for the cdf/pdf of breaking limited wave heights proposed in [65],

• a model for the cdf/pdf of large wave heights in [66].

These are parametric models, where the calculation needs as input spectral moments, as op-
posed to the algorithms in the previous module, where the whole spectrum is required.

Simulation of random processes and fields

Efficient simulation of a Gaussian process X (t) and its derivative X ′(t), given the spectral
density or the auto-correlation function, can be performed. A routine for simulation of a
transformed Gaussian process (and its derivative) is also included. For fast and exact sim-
ulation, some routines use a technique with circulant embedding of the covariance matrix,
[15]. More traditional spectral simulation methods (FFT) are also used. Simulation of dis-
crete Markov chains, Markov chains of turning points, switching Markov chains and Hidden
Markov Models, etc, is possible. Other routines generate time-varying random (Gaussian or
transformed Gaussian) wave fields with directional spectrum.

Discretization and cycle counting

After extraction of the so-called sequence of turning points (the sequence of local maxima
and minima) from data, cycle counts can be obtained, e.g. max-to-min cycles, trough-to-crest
cycles, rainflow cycles. For descriptive statistics, the counting distribution and the rainflow
matrix are important; these can be obtained. Given a cycle matrix, one can obtain histograms
for amplitude and range, respectively.
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Markov models

If the sequence of turning points forms a Markov chain (MC), it is called a MC of turning
points (MCTP). The Markov matrix is the expected histogram matrix of min-to-max and
max-to-min cycles. Given a rainflow matrix of a MCTP, one can find its Markov matrix, and
vice versa. In WAFO, algorithms are implemented to calculate the rainflow matrix for a MC
and a MCTP; cf. [17].

In some applications, one wants to model data, whose properties change according to
an underlying, often unobserved process, called the regime process. The state of the regime
process controls which parameters to use and when to switch the parameter values. If the
regime process is modelled by a Markov chain we have a Hidden Markov Model (HMM),
and this is the fundamental basis for the set of routines presented. For an application with
such switching Markov models for fatigue problems, see [25, 26].

Fatigue and Damage

In WAFO, routines for calculation of the accumulated damage according to the Palmgren-
Miner rule have been implemented. It is possible to compute the total damage from a cycle
count as well as from a cycle matrix.

Extreme value distributions

Certain probability distributions are extensively used in ocean engineering, e.g. Rayleigh,
Gumbel, Weibull. The generalized extreme-value distributions (GEV) and generalized Pareto
distributions (GPD) are also important. For these and other popular distributions, used in re-
liability and life-span models, it is possible to estimate parameters, generate random variables,
evaluate pdf and cumulative distribution function, and plot in various probability papers.

Kernel-density-estimation tools

The routines in this category complement the ones found in ’Data analysis’ and, obviously,
the routines in ’Statistical tools and extreme value distributions’. They are, however, also
applicable to multi-dimensional data, and hence very useful for smoothing purposes when
comparing (theoretical) joint distributions of wave characteristics to data; cf. [63] and [72].

WAFO as a statistics toolbox

Besides the special statistical routines for extreme value analysis and kernel smoothing, WAFO

contains statistical routines for handling univariate and multi-variate distribution functions,
simulation, moments, likelihood estimation, regression and factor analysis, hypothesis testing
and confidence intervals, bootstrap and jacknife estimation, and design of experiment.

Miscellaneous routines

We find here various plot routines, algorithms for numerical integration, and functions for
documentation of WAFO with modules. Note, that the figures in this tutorial have beed
edited with respect to font size, and some other properties.
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Figure 1.1: A simulation from S(�), a Torsethaugen spectrum with Hm0 = 6 [m], Tp = 8 [s].
Total number of points = 2000, �t = 0.1 [s].

1.4 Some applications of WAFO

In this section we demonstrate some of the capabilities of WAFO. For further examples and
knowledge about the algorithms used in the routines, we refer to the tutorial and the doc-
umentation in the routines. The necessary MATLAB code for generation of the figures in
this tutoriol is found in the directory WAFO/papers/tutorcom/. The commands for this
chapter are collected in Chapter1.m and run in 25 seconds on a 2.93 GHz 64 bit PC.

We start by defining a frequency spectrum, S(�), which will be used in many of the
examples; we choose a Torsethaugen spectrum with the parameters Hm0 = 6 [m], Tp = 8
[s], describing significant wave height and primary peak period, respectively. The energy
is divided between two peaks, corresponding to contributions from wind and swell; [69].
WAFO allows spectra to be defined simply by their parameters Hm0 and Tp.

1.4.1 Simulation from spectrum, estimation of spectrum

In Figure 1.1, plotted using waveplot, we have simulated a sample path from S(�). The user
specifies the number of wanted points in the simulation. The following code in MATLAB

generates 200 seconds of data sampled with 10 Hz from the discussed spectrum. More on
simulation can be found in Section 2.3.

Hm0 = 6; Tp = 8; plotflag = 1;

S1 = torsethaugen([],[Hm0 Tp],plotflag);

dt = 0.1; N = 2000;

xs = spec2sdat(S1,N,dt);

waveplot(xs,’-’)
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In a common situation, data is given in form of a time series, for which one wants to
estimate the related spectrum. We will now simulate 20 minutes of the signal sampled with
4 Hz, find an estimate Sest(�) and compare the result to the original Torsethaugen spectrum
S(�). The following code was used to generate Figure 1.2, where the original and estimated
spectra are displayed. The maximum lag size of the Parzen window function used (here 400)
can be chosen by the user or automatically by WAFO.

plotflag = 1; Fs = 4;

dt = 1/Fs; N = fix(20*60*Fs);

xs = spec2sdat(S1,N,dt);

Sest = dat2spec(xs,400)

plotspec(S1,plotflag), hold on

plotspec(Sest,plotflag,’--’)

axis([0 3 0 5]), hold off
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Figure 1.2: Solid: original Thorsethaugen spectrum. Dashed: spectrum estimated from data (20
minutes of observations). Maximum lag size of the Parzen window = 400.

1.4.2 Probability distributions of wave characteristics

WAFO gives the possibility to compute exact probability distributions for a number of wave
characteristics, given a spectral density. A wave characteristic as, for example, wave period, can
be defined in several ways, see Table 3.1, page 42, in Chapter 3, and WAFO allows the user
to choose between a number of definitions: trough-to-crest, down-to-up crossing, up-to-up
crossing, etc. In Chapter 3 we analyse wave characteristics from observed date, and present
some commonly used apprimative distributions. Chapter 4 describes how to use WAFO to
compute the exact theoretical distributions for all these wave characteristics in a Gaussian or
transformed Gaussian model.

In the numerical example, we consider the trough period, i.e. the down-to-up crossing
definition. The wave periods can be extracted from the realization in Figure 1.1, and are
shown as a histogram in Figure 1.3. This histogram may be compared to the theoretical
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density, calculated from the original spectrum S(�), and from the estimated spectrum Sest(�);
see Figure 1.3. Recall that, for this spectrum, Tp = 8 s. The figure shows the density for the
half period; the results are in good agreement with that from the original spectrum. The
following code lines to produced the presented figure. The different steps are: first extract
half periods from the data by means of the routine dat2wa and store in the variable T, then
use spec2tpdf to calculate the theoretical distribution. The parameter NIT determines the
accuracy of the calculation.

NIT = 3, paramt = [0 10 51];

dtyex = spec2tpdf(S1,[],’Tt’,paramt,0,NIT);

dtyest = spec2tpdf(Sest,[],’Tt’,paramt,0,NIT);

[T, index] = dat2wa(xs,0,’d2u’);

histgrm(T,25,1,1), hold on

pdfplot(dtyex), pdfplot(dtyest,’-.’)

axis([0 10 0 0.35]), hold off
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Figure 1.3: Pdf for wave trough period given S(�) (solid line) and Sest(�) (dash-dotted line).
The histogram shows the wave periods extracted from the simulated data in Figure 1.1.

1.4.3 Directional spectra

In WAFO one finds means for evaluation and visualization of directional spectra to model sea
states with waves coming from many different directions, that is

S(�, �) = S(�) D(�,�),

where S(�) is a frequency spectrum and D(�,�) is a spreading function. A number of com-
mon spreading functions can be chosen by the user.

One way of visualizing S(�, �) is a polar plot. In Figure 1.4 we show the resulting di-
rectional spectrum (solid line) for the Torsethaugen spectrum used above. The spreading
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function is of the cos-2s type, that is (in the frequency independent case),

D(�) =
� (s + 1)

2
√
�� (s + 1/2)

cos2s

(
�

2

)
with s=15. Note that the two peaks can be distinguished. The dash dotted line is the corre-
sponding result when the spreading function is frequency dependent, cf. [27].

Here are a few lines of code, which produce the graph of these directional spectra with
frequency independent and frequency dependent spreading. The main directions are 90o and
0o, respectively.

plotflag = 1;

Nt = 101; % number of angles

th0 = pi/2; % primary direction of waves

Sp = 15; % spreading parameter

D1 = spreading(Nt,’cos’,th0,Sp,[],0); %frequency independent

D12 = spreading(Nt,’cos’,0,Sp,S1.w,1); %frequency dependent

SD1 = mkdspec(S1,D1); SD12 = mkdspec(S1,D12);

plotspec(SD1,plotflag), hold on

plotspec(SD12,plotflag,’-.’), hold off
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Figure 1.4: Directional spectrum. The frequency spectrum is a Torsethaugen spectrum and the
spreading function is of cos-2s type with s = 15. Solid line: directional spectrum with
frequency independent spreading. Dash dotted line: directional spectrum, using frequency
dependent spreading function.

We finish the section with simulated sea surfaces on 128[m] by 128[m] for a sea with
directional spectra SD1 and SD12. The routine seasim is used for simulation.
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Figure 1.5: Simulated sea surfaces on a rectangle of 128 [m] by 128 [m]. Left: with directional
spectrum SD1, spreading independent of frequency; Right: with directional spectrum SD12,
frequency dependent spreading.

plotflag = 1; iseed = 1; Nx = 2^8; Ny = Nx; Nt = 1;

dx = 0.5; dy = dx; dt = 0.25; fftdim = 2;

randn(’state’,iseed)

Y1 = seasim(SD1,Nx,Ny,Nt,dx,dy,dt,fftdim,plotflag);

randn(’state’,iseed)

Y12 = seasim(SD12,Nx,Ny,Nt,dx,dy,dt,fftdim,plotflag);

The results are shown in Figure 1.5 and one can see that waves are coming from different
directions. However, frequency dependent spreading leads to a more irregular surface, so the
orientation of waves is less transparent. From Figure 1.5 it is not easy to deduce that both
sea surfaces have the same period distribution, but it is more obvious that the wavelength
distributions are different.

1.4.4 Fatigue, load cycles, and Markov models

In fatigue applications the exact sample path is not important, but only the peaks and troughs
of the load, called the turning points (TP). From these one can extract load cycles, from
which damage calculations and fatigue life predictions can be performed. In WAFO there
are numerous routines for evaluating fatigue measured loads, as well as making theoretical
calculations of distributions that are important for fatigue evaluation. A powerful technique
when analysing loads is to use Markov models as approximations, especially to model the
sequence of turning points by a Markov chain. For such models there exist many explicit
results. Here, we will use this Markov approximation for computing the intensity of rainflow
cycles and trough-to-crest cycles for the Gaussian model with spectrum from Figure 1.2.

For fatigue analysis the rainflow cycle, defined in Figure 5.1 in Chapter 5, is often used.
The Markov model is defined by the min-to-max pdf, which is obtained from the power
spectral density by using approximations in Slepian model processes, see e.g. [35] and refer-
ences therein. Chapter 4 describes how WAFO routines can be used to find the min-to-max
distribution for Gaussian loads. For the Markov model, there is an explicit solution for the
intensity of rainflow cycles, see [17]. By using the routines in WAFO the intensity of rainflow
cycles can be found using Markov approximation; see Figure 1.6, where also the rainflow
cycles found in the simulated load signal are shown. The figure has been plotted using the
following commands:
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paramu = [-6 6 61];

frfc = spec2cmat(S1,[],’rfc’,[],paramu);

pdfplot(frfc); hold on

tp = dat2tp(xs); rfc = tp2rfc(tp);

plot(rfc(:,2),rfc(:,1),’.’); hold off
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Figure 1.6: Intensity of rainflow cycles computed from the power spectral density through Markov
approximation, compared with the cycles found in the simulation.

The WAFO toolbox also contains routines for computing the intensity of rainflow cycles in
more complex load processes, for example for a switching Markov chain of TP. Details on
fatigue load analysis are given in Chapter 5.

1.4.5 Statistical extreme value analysis

The WAFO-toolbox contains almost 600 routines for general statistical analysis, description,
plotting, and simulation. In Chapter 6 we describe some routines which are particularly
important for wave and fatigue analysis, related to statistics of extremes. These are based on
the generalized extreme value (GEV) and generalized Pareto distribution (GPD), combined
with the peaks over threshold (POT) method. As an example we show an analysis of wave
elevation data from the Poseidon platform in the Japan Sea. Data from about 23 hours of
registration are stored in the data set yura87, taken with a 1 Hz sampling rate. We first load
and plot, in Figure 1.7, part of the data and calculate the maximum over 5 minute periods.

xn = load(’yura87.dat’); subplot(211);

plot(xn(1:30:end,1)/3600,xn(1:30:end,2),’.’)

title(’Water level’), ylabel(’m’)

yura = xn(1:85500,2);

yura = reshape(yura,300,285);
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maxyura = max(yura); subplot(212)

plot(xn(300:300:85500,1)/3600,maxyura,’.’)

xlabel(’Time (h)’), ylabel(’m’)

title(’Maximum 5 min water level’)
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Figure 1.7: Water level variation in the Japan Sea from the data set yura87 and maxima over
5 minute periods.

It is clear from the figures that there is a trend in the data, with decreasing spreading
with time. In Chapter 5 we will deal with that problem; here we make a crude extreme value
analysis, by fitting a GEV distribution to the sequence of 5 minute maxima, simply by issuing
the commands

phat = fitgev(maxyura,’plotflag’,1);

This results in Figure 1.8, which shows cumulative distribution and density of the fitted
GEV distribution together with diagnostic plots of empirical and model quantiles. We see
that the non-stationarity gives a very bad fit in the upper tail of the distribution. The fitted
GEV has shape parameter 0.1, with a 95% confidence interval (0.01, 0.18).
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1.5 Datastructures
help datastructures

DATASTRUCTURES of spectrum (S), covariance function (cvf)

and probability density (pdf) in WAFO

To represent spectra, covariance functions and probability

density functions in WAFO, the MATLAB datatype ’structured

array’ is used. Here follows a list of the fields in

the struct representing S, cvf and pdf, respectively.

Spectrum structure

~~~~~~~~~~~~~~~~~~

Requisite fields:

.type String: ’freq’, ’dir’, ’k2d’, k1d’, ’encdir’, ’enc’.

.S Spectrum values (size=[nf 1] or [np nf]).

.w OR .f OR .k Frequency/wave number lag, length nf.

.tr Transformation function (default [] (none)).

.h Water depth (default inf).

.norm Normalization flag, Logical 1 if S is normalized,

0 if not.

.note Memorandum string.

.date Date and time of creation or change.

Type-specific fields:

.k2 Second dim. wave number lag,

if .type=’k2d’, ’rotk2d’, length np.

.theta Angular lags, if .type=’dir’, ’rotdir’ or ’encdir’,

length np.

.v Ship speed, if .type = ’enc’ or ’encdir’.

.phi angle of rotation of the coordinate system

(counter-clockwise) e.g. azimuth of a ship.

See also createspec, plotspec

Covariance function (cvf) structure

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.R Covariance function values, size [ny nx nt],

all singleton dim. removed.

.x Lag of first space dimension, length nx.

.y Lag of second space dimension, length ny.

.t Time lag, length nt.

.h Water depth.

.tr Transformation function.

.type ’enc’, ’rot’ or ’none’.

.v Ship speed, if .type=’enc’ .

.phi Rotation of coordinate system, e.g. direction of ship.
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.norm Normalization flag, Logical 1 if autocorrelation,

0 if covariance.

.Rx ... .Rtttt Obvious derivatives of .R.

.note Memorandum string.

.date Date and time of creation or change.

See also createcov, spec2cov, cov2spec, covplot

Probability density function (pdf) structure

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Describing a density of n variables:

.f Probability density function values,

(n-dimensional matrix).

.x Cell array of vectors defining grid for variables,

(n cells).

.labx Cell array of label strings for the variables,

(n cells).

.title Title string.

.note Memorandum string.

See also createpdf, pdfplot



CHAPTER 2

Random loads and stochastic waves

In this chapter we present some tools for analysis of random functions with respect to their
correlation, spectral, and distributional properties. We first give a brief introduction to the
theory of Gaussian processes and then we present programs in WAFO, which can be used to
analyze random functions. The presentation will be organized in three examples: Example 1
is devoted to estimation of different parameters in the model, Example 2 deals with spectral
densities and Example 3 presents the use of WAFO to simulate samples of a Gaussian process.
The commands, collected in Chapter2.m, run in less than 10 seconds on a 2.93 GHz 64 bit
PC.

2.1 Introduction and preliminary analysis

The functions we shall analyze can be measured stresses or strains, which we call loads, or
other measurements, where waves on the sea surface is one of the most important examples.
We assume that the measured data are given by one of the following forms:

1. In the time domain, as measurements of a response function denoted by x(t), 0 ≤
t ≤ T , where t is time and T is the duration of the measurements. The x(t)-function
is usually sampled with a fixed sampling frequency and a given resolution, i.e. the
values of x(t) are also discretized. The effects of sampling can not always be neglected
in estimation of parameters or distributions. We assume that measured functions are
saved as a two column ASCII or mat file.

Some general properties of measured functions can be summarized by using a few
simple characteristics. Those are the mean m, defined as the average of all values, the
standard deviation �, and the variance �2, which measure the variability around the
mean in linear and quadratic scale. These quantities are estimated by

m = 1/T
∫ T

0
x(t) dt, (2.1)

�2 = 1/T
∫ T

0
(x(t) − m)2 dt, (2.2)

17
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for a continuous recording or by corresponding sums for a sampled series.

2. In the frequency domain, as a power spectrum, which is an important mode in systems
analysis. This means that the signal is represented by a Fourier series,

x(t) ≈ m +

N∑
i=1

ai cos(�i t) + bi sin(�i t), (2.3)

where �i = i · 2�/T are angular frequencies, m is the mean of the signal and ai, bi are
Fourier coefficients.

3. Another important way to represent a load sequence is by means of the crossing spectrum
or crossing intensity, �(u) = the intensity of upcrossings = average number of upcrossings
per time unit, of a level u by x(t) as a function of u, see further in Section 2.2.3.
The mean frequency f0 is usually defined as the number of times x(t) crosses upwards
(upcrosses) the mean level m normalized by the length of the observation interval T ,
i.e. f0 = �(m). An alternative definition,1 which we prefer to use is that f0 = max �(u)),
i.e. it is equal to the maximum of �(u). The irregularity factor �, defined as the mean
frequency f0 divided by the intensity of local maxima (“intensity of cycles”, i.e. the
average number of local maxima per time unit) in x(t). Note, a small � means an
irregular process, 0 < � ≤ 1.

Example 1. (Sea data) In this example we use a series with wave data sea.dat with time
argument in the first column and function values in the second column. The data used in
the examples are wave measurements at shallow water location, sampled with a sampling
frequency of 4 Hz, and the units of measurement are seconds and meters, respectively. The
file sea.dat is loaded into MATLAB and after the mean value has been subtracted the data
are saved in the two column matrix xx.

xx = load(’sea.dat’);

me = mean(xx(:,2))

sa = std(xx(:,2))

xx(:,2) = xx(:,2) - me;

lc = dat2lc(xx);

plotflag = 2;

lcplot(lc,plotflag,0,sa)

Here me and sa are the mean and standard deviation of the signal, respectively. The vari-
able lc is a two column matrix with levels in the first column and the number of upcrossing
of the level in the second. In Figure 2.1 the number of upcrossings of xx is plotted and
compared with an estimation based on the assumption that xx is a realization of a Gaussian
sea.

Next, we compute the mean frequency as the average number of upcrossings per time
unit of the mean level (= 0); this may require interpolation in the crossing intensity curve, as
follows.

1Still another definition, to be used in Chapter 5, is that f0 is the average number of completed load cycles
per time unit.
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T = max(xx(:,1))-min(xx(:,1))

f0 = interp1(lc(:,1),lc(:,2),0)/T

% zero up-crossing frequency
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Figure 2.1: The observed crossings intnsity compared with the theoretically expected for Gaussian
signals, see (2.5).

The process of fatigue damage accumulation depends only on the values and the order of
the local extremes in the load. The sequence of local extremes is called the sequence of turning
points. It is a two column matrix with time for the extremes in the first column and the values
of xx in the second.

tp = dat2tp(xx);

fm = length(tp)/(2*T) % frequency of maxima

alfa = f0/fm

Here alfa is the irregularity factor. Note that length(tp) is equal to the number of
local maxima and minima and hence we have a factor 2 in the expression for fm. �

We finish this section with some remarks about the quality of the measured data. Espe-
cially sea surface measurements can be of poor quality. It is always good practice to visually
examine the data before the analysis to get an impression of the quality, non-linearities and
narrow-bandedness of the data.

Example 1. (contd.) First we shall plot the data xx and zoom in on a specific region. A
part of the sea data is presented in Figure 2.2 obtained by the following commands.

waveplot(xx,tp,’k-’,’*’,1,1)

axis([0 2 -inf inf])

However, if the amount of data is too large for visual examination, or if one wants a more
objective measure of the quality of the data, one could use the following empirical criteria:

• x′(t) < 5 [m/s], since the raising speed of Gaussian waves rarely exceeds 5 [m/s],
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Figure 2.2: A part of the sea data with turning points marked as stars.

• x′′(t) < 9.81/2, [m/s2] which is the limiting maximum acceleration of Stokes waves,

• if the signal is constant in some intervals, then this will add high frequencies to the
estimated spectral density; constant data may occur if the measuring device is blocked
during some period of time.

To find possible spurious points of the dataset use the following commands.

dt = diff(xx(1:2,1));

dcrit = 5*dt;

ddcrit = 9.81/2*dt*dt;

zcrit = 0;

[inds indg] = findoutliers(xx,zcrit,dcrit,ddcrit);

The program will give the following list when used on the sea data.

Found 0 missing points

Found 0 spurious positive jumps of Dx

Found 0 spurious negative jumps of Dx

Found 37 spurious positive jumps of D^2x

Found 200 spurious negative jumps of D^2x

Found 244 consecutive equal values

Found the total of 1152 spurious points

The values for zcrit, dcrit and ddcrit can be chosen more carefully. One must be
careful using the criteria for extreme value analysis, because it might remove extreme waves
that belong to the data and are not spurious. However, small changes of the constants are
usually not so crucial. As seen from the transcripts from the program a total of 1152 points
are found to be spurious which is approximately 12 % of the data. Based on this one may
classify the datasets into good, reasonable, poor, and useless. Obviously, uncritical use of data
may lead to unsatisfactory results. We return to this problem when discussing methods to
reconstruct the data. �
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Figure 2.3: The observed, unsmoothed, spectrum in the data set sea.dat.

2.2 Frequency modeling of load histories

2.2.1 Power spectrum, periodogram

The most important characteristic of signals of the form (2.3) in frequency domain is their
power spectrum

ŝi = (a2
i + b2

i )/(2��),

where �� is the sampling interval in frequency domain, i.e. �i = i ·��. The two-column
matrix ŝ(�i) = (�i, ŝi) will be called the power spectrum of x(t). The alternative term peri-
odogram was introduced as early as 1898 by A. Schuster, [62].

The sequence �i such that cos�i = ai/
√

2 ŝi �� and sin�i = −bi/
√

2 ŝi ��, is called a
sequence of phases and the Fourier series can be written as follows:

x(t) ≈ m +

N∑
i=1

√
2 ŝi�� cos(�i t + �i).

If the sampled signal contains exactly 2N + 1 points, then x(t) is equal to its Fourier series
at the sampled points. In the special case when N = 2k, the so-called FFT (Fast Fourier
Transform) can be used to compute the Fourier coefficients (and the spectrum) from the
measured signal and in reverse the signal from the Fourier coefficients.

The Fourier coefficient to the zero frequency is just the mean of the signal, while the
variance is given by �2 = ��

∑
ŝ(�i) ≈ ∫∞

0 ŝ(�) d�. The last integral is called the zero-
order spectral moment m0. Similarly, higher-order spectral moments are defined by

mn =

∫ ∞

0
�n ŝ(�) d�.

Example 1. (contd.) We now calculate the spectrum ŝ(�) for the sea data signal xx.

Lmax = 9500;

S = dat2spec(xx,Lmax);

plotspec(S)
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In Figure 2.3 we can see that the spectrum is extremely irregular with sharp peaks at many
distinct frequencies. In fact, if we had analysed another section of the sea data we had found a
similar general pattern, but the sharp peaks had been found at some other frequencies. It must
be understood, that the observed irregularities are random and vary between measurements of
the sea even under almost identical conditions. This will be further discussed in the following
section, where we introduce smoothing techniques to get a stable spectrum that represents
the “average randomness” of the sea state.

Next, the spectral moments will be computed.

[mom text] = spec2mom(S,4)

[sa sqrt(mom(1))]

The vector mom now contains spectral moments m0, m2, m4, which are the variances of the
signal and its first and second derivative. We can speculate that the variance of the derivatives
is too high because of spurious points. For example, if there are several points with the same
value, the Gibb’s phenomenon leads to high frequencies in the spectrum. �

2.2.2 Random functions in spectral domain – Gaussian processes

In the previous section we studied the properties of one specific signal in frequency domain.
Assume now that we get a new series of measurements of a signal, which we are willing to
consider as equivalent to the first one. However, the two series are seldom identical and differ
in some respect that it is natural to regard as purely random. Obviously it will have a different
spectrum ŝ(�) and the phases will be changed.

A useful mathematical model for such a situation is the random function (stochastic
process) model which will be denoted by X (t). Then x(t) is seen as particular randomly
chosen function. The simplest model for a stationary signal with a fixed spectrum ŝ(�) is

X (t) = m +
N∑

i=1

√
ŝi ��

√
2 cos(�i t + �i), (2.4)

where the phases �i are random variables, independent and uniformly distributed between
0 and 2�. However, this is not a very realistic model either, since in practice one often ob-
serves a variability in the spectrum ŝ(�) between measured functions. Hence, ŝi should also be
modeled to include a certain randomness. The best way to accomplish this is to assume that
there exists a deterministic function S(�) such that the average value of ŝ(�i)�� over many
observed series can be approximated by S(�i)��. In fact, in many cases one can model ŝi as

ŝi = R2
i · S(�i)/2,

where Ri are independent random factors, all with a Rayleigh distribution, with probability
density function fR(r) = r exp(−r2/2), r > 0. (Observe that the average value of R2

i is 2.)
This gives the following random function as a model for the series,

X (t) = m +

N∑
i=1

√
S(�i)��Ri cos(�i t + �i).
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The process X (t) has many useful properties that can be used for analysis. In particular,
for any fixed t, X (t) is normally (Gaussian) distributed. Then, the probability of any event
defined for X (t) can, in principal, be computed when the mean m and the spectral density S
are known.

In sea modeling, the components in the sum defining X (t) can be interpreted as indi-
vidual waves. By the assumption that Ri and �i are independent random variables one has
that the individual waves are independent stationary Gaussian processes2 with mean zero and
covariance function given by

ri(�) = �� S(�i) cos(�i �).

Consequently, the covariance between X (t) and X (t + �) is given by

rX (�) = E[(X (t) − m)(X (t + �) − m)] = ��
N∑

i=1

S(�i) cos(�i �).

More generally, for a stationary stochastic process with spectral density S(�), the correlation
structure of the process is defined by its spectral density function, also called power spectrum,

r(�) = C[X (t), X (t + �)] =

∫ ∞

0
cos(��) S(�) d�.

Since V[X (t)] = rX (0) =
∫∞

0 S(�) d�, the spectral density represents a continuous distribu-
tion of the wave energy over a continuum of frequencies.

The Gaussian process model is particularly useful in connection with linear filters. If Y (t)
is the output of a linear filter with the Gaussian process X (t) as input, then Y (t) is also
normally distributed. Further, the spectrum of Y (t) is related to that of X (t) in a simple way.
If the filter has transfer function H (�), also called frequency function, then the spectrum of
Y (t), denoted by SY , is given by

SY (�) = |H (�)|2SX (�).

For example, the derivative X ′(t) is a Gaussian process with mean zero and spectrum
SX ′(�) = �2SX (�). The variance of the derivative is equal to the second spectral moment,

�2
X ′ =

∫
SX ′(�) d� =

∫
�2SX (�) d� = m2.

Example 1. (contd.)
In order to estimate the spectrum of a Gaussian process one needs several realizations of

the process. Then, one spectrum estimate can be made for each realization, which are then
averaged. However, in many cases only one realization of the process is available. In such
a case one is often assuming that the spectrum is a smooth function of � and can use this
information to improve the estimate. In practice, it means that one has to use some smoothing
techniques. For the sea.dat we shall estimate the spectrum by means of the WAFO function
dat2spec with a second parameter defining the degree of smoothing.

2A Gaussian stochastic process X (t) is any process such that all linear combinations
∑

akX (tk) have a Gaus-
sian distribution; also derivatives X ′(t) and integrals

∫ b
a X (t) dt are Gaussian.
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Figure 2.4: Estimated spectra in the data set sea.dat with varying degree of smoothing.

Lmax0 = 200; Lmax1 = 50;

S1 = dat2spec(xx,Lmax0);

S2 = dat2spec(xx,Lmax1);

plotspec(S1,[],’-.’), hold on

plotspec(S2), hold off

In Figure 2.4 we see that with decreasing second input the spectrum estimate becomes
smoother, and that it in the end becomes unimodal.

Knowing the spectrum one can compute the covariance function by means of the Fourier
inversion formula, which for a time-continuous signal reads,

S(�) =
2
�

∫ ∞

0
cos(��)r(�) d�.

The following code in WAFO will compute the covariance for the unimodal spectral density
S1 and compare it with estimated covariance in the signal xx.

Lmax = 80;

R1 = spec2cov(S1,1);

Rest = dat2cov(xx,Lmax);

covplot(R1,Lmax,[],’.’), hold on

covplot(Rest), hold off

We can see in Figure 2.5(a) that the covariance function corresponding to the spectral
density S2 differs significantly from the one estimated directly from data. It can be seen
that the covariance corresponding to S1 agrees much better with the estimated covariance
function; see Figure 2.5(b), which is obtained using the same code with S1 in spec2cov

replaced by S2. �

Observe that the WAFO function spec2cov can be used to compute a covariance struc-
ture which can contain covariances both in time and in space as well as that of the derivatives.
The input can be any spectrum structure, e.g. wave number spectrum, directional spectrum
or encountered directional spectrum; type help spec2cov for detailed information.
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Figure 2.5: The covariance function estimated in the data set sea.dat, solid line, compared to
the theoretically computed covariance functions for the spectral densities S2 in (a) and S1

in (b).

2.2.3 Crossing intensity – Rice’s formula

The Gaussian process is a sum of cosine terms with amplitudes defined by the spectrum,
and the instantaneous value X (t) has a normal distribution with mean 0 and variance �2 =∫

S(�) d�. In wave analysis and fatigue applications there is another quantity that plays a
central role, namely the upcrossing intensity �(u), which yields the average number, per time
or space unit, of upcrossings of the level u. It contains important information on the fatigue
properties of a load signal and also of the wave character of a random wave.3

For a Gaussian process the crossing intensity is given by the celebrated Rice’s formula,

�(u) = f0 exp(−(u − m)2/2�2). (2.5)

Using spectral moments we have that �2 = m0 while f0 = 1
2�

√
m2
m0

is the mean frequency.

2.2.4 Transformed Gaussian models

The standard assumptions for a sea state under stationary conditions are that the model X (t)
is a stationary and ergodic stochastic process with mean E[X (t)] assumed to be zero, and with
a spectral density S(�). The knowledge of which kind of spectral densities S(�) are suitable
to describe different sea state data is well established from experimental studies.

Real data x(t) seldom perfectly support the Gaussian assumption for the process X (t).
But since the Gaussian case is well understood and there are approximative methods to obtain
wave characteristics from the spectral density S(�) for Gaussian processes, one often looks for
a model of the sea state in the class of Gaussian processes. Furthermore, in previous work,
[57], we have found that for many sea wave data, even such that are clearly non-Gaussian, the

3The general expression for the upcrossing intensity for a stationary process X (t) with derivative X ′(t), is
μ(u) =

∫∞
z=0 z fX (0),X ′(0)(u, z) dz, where fX (0),X ′(0)(u, z) is a joint probability density function.



26 CHAPTER 2. RANDOM LOADS AND STOCHASTIC WAVES

wavelength and amplitude densities can be very accurately approximated using the Gaussian
process model.

However, the Gaussian model can lead to less satisfactory results when it comes to the
distribution of crest heights or joint densities of troughs and crests. In that case we found in
[57] that a simple transformed Gaussian process used to model x(t) gave good approximations
for those densities.

Consequently, in WAFO we shall model x(t) by a process X (t) which is a function of a
single Gaussian process X̃ (t), i.e.

X (t) = G(X̃ (t)), (2.6)

where G(·) is a continuously differentiable function with positive derivative. We shall denote
the spectrum of X by S, and the spectrum of X̃ (t) by S̃. The transformation G performs the
appropriate non-linear translation and scaling so that X̃ (t) is always normalized to have mean
zero and variance one, i.e. the first spectral moment of S̃ is one.

Note that once the distributions of crests, troughs, amplitudes or wavelengths in a Gaus-
sian process X̃ (t) are computed, then the corresponding wave distributions in X (t) are ob-
tained by a simple variable transformation involving only the inverse of G, which we shall
denote by g. Actually we shall use the function g to define the transformation instead of G,
and use the relation x̃(t) = g(x(t)) between the real sea data x(t) and the transformed data
x̃(t). If the model in Eq. (2.6) is correct, then x̃(t) should be a sample function of a process
with Gaussian marginal distributions.

There are several different ways to proceed when selecting a transformation. The sim-
plest alternative is to estimate the function g directly from data by some parametric or non-
parametric techniques. A more physically motivated procedure is to use some of the paramet-
ric functions proposed in the literature, based on approximations of non-linear wave theory.
The following options are programmed in the toolbox:

dat2tr - non-parametric transformation g proposed by Rychlik,

hermitetr - transformation g proposed by Winterstein,

ochitr - transformation g proposed by Ochi et al.

The transformation proposed by by Ochi et al., [44], is a monotonic exponential func-
tion, while Winterstein’s model, [73], is a monotonic cubic Hermite polynomial. Both trans-
formations use moments of X (t) to compute g. Information about the moments of the pro-
cess can be obtained by site specific data, laboratory measurements or from physical consid-
erations. Rychlik’s non-parametric method is based on the crossing intensity �(u); see [57].
Martinsen and Winterstein, [40], derived an expression for the skewness and kurtosis for
narrow banded Stokes waves to the leading order and used these to define the transforma-
tion. The skewness and kurtosis (excess) of this model can also be estimated from data by the
WAFO functions skew and kurt.

Example 1. (contd.) We begin with computations of skewness and kurtosis for the data
set xx. The commands

rho3 = skew(xx(:,2))

rho4 = kurt(xx(:,2))
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give the values rho3 = 0.25 and rho4 = 3.17, respectively, compared to rho3 = 0 and
rho4 = 3 for Gaussian waves. We can compute the same model for the spectrum S̃ using the
second order wave approximation proposed by Winterstein. His approximation gives suitable
values for skewness and kurtosis

[sk, ku] = spec2skew(S1);

Here we shall use Winterstein’s Hermite transformation and denote it by gh, and compare
it with the linear transformation, denoted by g, that only has the effect to standardize the
signal, assuming it is already Gaussian,

gh = hermitetr([],[sa sk ku me]);

g = gh; g(:,2)=g(:,1)/sa;

trplot(g)

These commands will result in two two-column matrices, g, gh, with equally spaced y-
values in the first column and the values of g(y) in the second column.

Since we have data we may estimate the transformation directly by the method proposed
by Rychlik et al., in [57]:

[glc test0 cmax irr gemp] = dat2tr(xx,[],’plotflag’,1);

hold on

plot(glc(:,1),glc(:,2),’b-’)

plot(gh(:,1),gh(:,2),’b-.’), hold off

The same transformation can be obtained from the crossing intensity by use of the WAFO

function lc2tr.
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Figure 2.6: Comparisons of the three transformations g, straight line is the Gaussian model, dash
dotted line the Hermite transformation gh and solid line the Rychlik method glc.

In Figure 2.6 we compare the three transformations, the straight line is the Gaussian
linear model, the dash dotted line is the Hermite transformation based on higher moments
of the response computed from the spectrum and the solid line is the direct transformation
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Figure 2.7: The simulated 50 values of the test variable for the Gaussian process with spectrum
S1 compared with the observed value (dashed line).

estimated from crossing intensity. (The unsmoothed line shows the estimation of the direct
transformation from unsmoothed crossing intensity). We can see that the transformation
derived from crossings will give the highest crest heights. It can be proved that asymptotically
the transformation based on crossings intensity gives the correct density of crest heights.

The transformations indicates that data xx has a light lower tail and heavy upper tail
compared to a Gaussian model. This is also consistent with second order wave theory, where
the crests are higher and the troughs shallower compared to Gaussian waves. Now the ques-
tion is whether this difference is significant compared to the natural statistical variability due
to finite length of the time series.

To determine the degree of departure from Gaussianity, we can compare an indicator of
non-Gaussianity test0 obtained from Monte Carlo simulation. The value of test0 is a
measure of how munch the transformation g deviates from a straight line.

The significance test is done by simulating 50 independent samples of test0 from a
true Gaussian process with the same spectral density and length as the original data. This is
accomplished by the WAFO program testgaussian. The output from the program is a plot
of the ratio test1 between the simulated (Gaussian) test0-values and the sample test0:

N = length(xx);

test1 = testgaussian(S1,[N,50],test0);

The program gives a plot of simulated test values, see Figure 2.7. As we see from the figure
none of the simulated values of test1 is above 1.00. Thus the data significantly departs from
a Gaussian distribution; see [57] for more detailed discussion of the testing procedure and
the estimation of the transformation g from the crossing intensity.

We finish the tests for Gaussianity of the data by a more classical approach and simply
plot the data on normal probability paper. Then N independent observations of identically
distributed Gaussian variables form a straight line in a normalplot. Now, for a time series
the data is clearly not independent. However, if the process is ergodic then the data forms a
straight line as N tends to infinity.
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Figure 2.8: The data sea.dat on normal probability plot.

The command

plotnorm(xx(:,2))

produces Figure 2.8. As we can see the normal probability plot is slightly curved indicating
that the underlying distribution has a heavy upper tail and a light lower tail. �

2.2.5 Spectral densities of sea data

The knowledge of which kind of spectral density S(�) is suitable to describe sea state data is
well established from experimental studies. One often uses some parametric form of spectral
density functions, e.g. a JONSWAP-spectrum. This formula is programmed in a WAFO func-
tion jonswap, which evaluates the spectral density S(�) with specified wave characteristics.
There are several other programmed spectral densities in WAFO to allow for bimodal and
finite water depth spectra. The list includes the following spectra:

jonswap - JONSWAP spectral density

wallop - Wallop spectral density

ochihubble - Bimodal Ochi-Hubble spectral density

torsethaugen - Bimodal (swell + wind) spectral density

bretschneider - Bretschneider (Pierson-Moskowitz)

spectral density

mccormick - McCormick spectral density

tmaspec - JONSWAP spectral density

for finite water depth

WAFO also contains some different spreading functions; use the help function on spec

and spreading for more detailed information.
The spectrum of the sea can be given in many different formats, that are interconnected

by the dispersion relation4. The spectrum can be given using frequencies, angular frequencies
or wave numbers, and it can also be directional.

4The dispersion relation between frequency ω and wave number κ on finite water depth h, reads ω2 =
gκ tanh hκ, where g is the acceleration of gravity.
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A related spectrum is the encountered spectrum for a moving vessel. The transforma-
tions between the different types of spectra are defined by means of integrals and variable
change defined by the dispersion relation and the Doppler shift of individual waves. The
function spec2spec makes all these transformations easily accessible for the user. (Actually
many programs perform the appropriate transformations internally whenever it is necessary
and for example one can compute the density of wave-length, which is a quantity in space
domain, from an input that is the directional frequency spectrum, which is related to the
time domain.)
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Figure 2.9: Directional spectrum of JONSWAP sea (dashed line) compared with the encountered
directional spectrum for heading sea, speed 10 [m/s] (solid line).

Example 2. (Different forms of spectra) In this example we have chosen a JONSWAP spec-
trum with parameters defined by significant wave height Hm0 = 7[m] and peak period Tp

= 11[s]. This spectrum describes the measurements of sea level at a fixed point (buoy).

Hm0 = 7; Tp = 11;

spec = jonswap([],[Hm0 Tp]);

spec.note

In order to include the space dimension, i.e. the direction in which the waves propagate,
we compute a directional spectrum by adding spreading; see dashed curves in Figure 2.9.

D = spreading(101,’cos2s’,0,[],spec.w,1)

Sd = mkdspec(spec,D)

Next, we consider a vessel moving with speed 10[m/s] against the waves. The sea mea-
sured from the vessel will have a different directional spectrum, called the encountered direc-
tional spectrum. The following code will compute the encountered directional spectrum and
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plot it on top of the original directional spectrum. The result is shown as the solid curves in
Figure 2.9.

Se = spec2spec(Sd,’encdir’,0,10);

plotspec(Se), hold on

plotspec(Sd,1,’--’), hold off

Obviously, the periods of waves in the directional sea are defined by the JONSWAP spec-
trum (spreading is not affecting the sea level at a fixed point), but the encountered periods
will be shorter with heading seas. This can be seen by comparing the JONSWAP spectrum
spec with the following two spectra:

Sd1 = spec2spec(Sd,’freq’);

Sd2 = spec2spec(Se,’enc’);

plotspec(spec), hold on

plotspec(Sd1,1,’.’),

plotspec(Sd2), hold off

We can see in Figure 2.10(a) that the spectra spec and Sd1 are identical (in numerical sense),
while spectrum Sd2 contains more energy at higher frequencies.

A similar kind of question is how much the wave length differs between a longcrested
JONSWAP sea and a JONSWAP sea with spreading. The wavenumber spectra for both cases
can be computed by the following code, the result of which is shown in Figure 2.10(b).

Sk = spec2spec(spec,’k1d’)

Skd = spec2spec(Sd,’k1d’)

plotspec(Sk), hold on

plotspec(Skd,1,’--’), hold off
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Figure 2.10: (a) The frequency JONSWAP spectrum compared with encountered frequency
spectrum for heading sea speed 10 [m/s] (solid line). (b) The wave number spectrum for
longcrested JONSWAP sea (solid line) compared with wave number spectrum for JONSWAP

with spreading.
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Finally, we shall show how the JONSWAP spectrum can be corrected for a finite depth,
see [12]. The WAFO phi1 computes the spectrum for water of finite depth, here 20[m].

plotspec(spec,1,’--’), hold on

S20 = spec;

S20.S = S20.S.*phi1(S20.w,20);

S20.h = 20;

plotspec(S20), hold off

The resulting spectra are shown in Figure 2.11. �
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Figure 2.11: Standard JONSWAP spectrum (dashed line) compared with the spectrum on finite
depth of 20 [m] (solid line)

2.3 Simulation of transformed Gaussian process

In this section we shall present some of the programs in WAFO that can be used to simulate
random signals, loads and waves; type help wsim for the complete list. We shall be mostly
concerned with simulation of the transformed Gaussian model for sea X (t) = G(X̃ (t)).

The first important case is when we wish to reproduce random versions of the measured
signal x(t). Using dat2tr one first estimates the transformation g. Next, using a function
dat2gaus one can compute x̃(t) = g(x(t)), which we assume is a realization of a Gaussian
process. From x̃ we can then estimate the spectrum S̃(�) by means of the function dat2spec.
The spectrum S̃(�) and the transformation g will uniquely define the transformed Gaussian
model. A random function that models the measured signal can then be obtained using the
simulation program spec2sdat. In the following example we shall illustrate this approach
on the data set sea.dat.

Before we can start to simulate we need to put the transformation into the spectrum
data structure, which is a MATLAB structure variable. Since WAFO is based on transformed
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Gaussian processes the entire process structure is defined by the spectrum and the transfor-
mation together. Therefore the transformation has been incorporated, as part of a model,
into the spectrum structure, and is passed to other WAFO programs with the spectrum. If no
transformation is given then the process is Gaussian.

Observe that the possibly nonzero mean m, say, for the model is included in the transfor-
mation. The change of mean by for example 0.5 [m] is simply accomplished by modifying
the transformation, e.g. by executing the following command g(:,2) = g(:,2)+0.5;.
Consequently the spectrum structure completely defines the model.

IMPORTANT NOTE: When the simulation routine spec2sdat is called with a spectrum
argument that contains a scale changing transformation spectrum.tr, then it is assumed
that the input spectrum is standardized with spectral moment m0 = 1, i.e. unit variance. The
correct standard deviation for the output should normally be obtained via a transformation
spectrum.tr. If you happen to use a transformation together with an input spectrum that
does not have unit variance, then you get the double scale effect, both from the transforma-
tion and via the standard deviation from the spectrum. It is only the routine spec2sdat

that works in this way. All other routines, in particular those which calculate cycle distribu-
tions, perform an internal normalization of the spectrum before the calculation, and then
transforms back to the original scale at the end.

Example 3. (Simulation of a random sea) In Example 1 on page 19 we have shown that
the data set sea.dat contains a considerable amount of spurious points that we would like
to omit or censor.

The program reconstruct replaces the spurious data by simulated data (one is assuming
that no information about the removed points is known and one is filling up the gaps on the
basis of the remaining data and fitted transformed Gaussian process; see [8, 9] for more
details. The reconstruction is performed as

[y grec] = reconstruct(xx,inds);

where y is the reconstructed data and grec is the transformation estimated from the signal
y. In Figure 2.12 we can see the transformation (solid line) compared with the empirical
smoothed transformation, glc, which is obtained from the original sequence xx without re-
moving the spurious data (dash-dotted line). We can see that the new transformations has
slightly smaller crests. Actually, it is almost identical with the transformation gh computed
from the spectrum of the signal, however, it can be only a coincident (due to random fluctu-
ations) and hence we do not draw any conclusions from this fact.

The value of the test variable for the transformation grec is 0.84 and, as expected, it is
smaller than the value of test0 = 1.00 computed for the transformation glc. However, it is
still significantly larger then the values shown in Figure 2.7, i.e. the signal y is not a Gaussian
signal.

We turn now to estimation of the spectrum in the model from the simulated data. First
transform data to obtain a sample x̃(t):

L = 200

x = dat2gaus(y,grec);

Sx = dat2spec(x,L);
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Figure 2.12: The transformation computed from the reconstructed signal y (solid line) compared
with the transformation computed from the original signal xx (dashed dotted line).

The important remark here is that the smoothing of the spectrum defined by the parameter
L, see help dat2spec, is removing almost all differences between the spectra in the three
signals xx, y, and x. (The spectrum Sx is normalized to have first spectral moment one and
has to be scaled down to have the same energy as the spectrum S1.)

Next, we shall simulate a random function equivalent to the reconstructed measurements
y. The Nyquist frequency gives us the time sampling of the simulated signal,

dt = spec2dt(Sx)

and is equal to 0.25 seconds, since the data has been sampled with a sampling frequency of
4 Hz. We then simulate 2 minutes (2 × 60 × 4 points) of the signal, to obtain a synthetic
wave equivalent to the reconstructed non-Gaussian sea data.

Ny = fix(2*60/dt) % = 2 minutes

Sx.tr = grec;

ysim = spec2sdat(Sx,Ny);

waveplot(ysim,’-’)

The result is shown in Figure 2.13. �

In the next example we consider a signal with a given theoretical spectrum. Here we have
a problem whether the theoretical spectrum is valid for the transformed Gaussian model, i.e.
it is a spectrum S(�) or is it the spectrum of the linear sea S̃. In the previous example the
spectrum of the transformed process was almost identical with the normalized spectrum of
the original signal. In [57] it was observed that for sea data the spectrum estimated from the
original signal and that for the transformed one do not differ significantly. Although more
experiments should be done in order to recommend using the same spectrum in the two
cases, here, if we wish to work with non-Gaussian models with a specified transformation,
we shall derive the S̃ spectrum by dividing the theoretical spectrum by the square root of the
first spectral moment of S.
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Figure 2.13: Two minutes of simulated sea data, equivalent to the reconstructed data.
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Figure 2.14: Comparison between the estimated spectrum in the signal sea.dat (solid line)
and the theoretical spectrum of the Torsethaugen type (dash-dotted line).

Example 3. (contd.) Since the spectrum S1 in Figure 2.4 is clearly two-peaked with peak
frequency Tp = 1.1 [Hz] we choose to use the Torsethaugen spectrum. (This spectrum is
derived for a specific location and we should not expect that it will work well for our case.)
The inputs to the programs are Tp and Hs, which we now compute.

Tp = 1.1;

H0 = 4*sqrt(spec2mom(S1,1))

St = torsethaugen([0:0.01:5],[H0 2*pi/Tp]);

plotspec(S1), hold on

plotspec(St,[],’-.’)

In Figure 2.14, we can see that the Torsethaugen spectrum has too little energy on the swell
peak. Despite this fact we shall use this spectrum in the rest of the example.

We shall now create the spectrum S̃(�) (= Snorm), i.e. the spectrum for the standardized
Gaussian process X̃ (t) with standard deviation equal to one.
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Snorm = St;

Snorm.S = Snorm.S/sa^2;

dt = spec2dt(Snorm)

The sampling interval dt = 0.63 [s] (= �/5), is a consequence of our choice of cut off
frequency in the definition of the St spectrum. This will however not affect our simulation,
where any sampling interval dt can be used.

Next, we recompute the theoretical transformation gh.

[Sk Su] = spec2skew(St);

sa = sqrt(spec2mom(St,1));

gh = hermitetr([],[sa sk ku me]);

Snorm.tr = gh;

The transformation is actually almost identical to gh for the spectrum S1, which can be seen
in Figure 2.6, where it is compared to the Gaussian model g, given by a straight line. We
can see from the diagram that the waves in a transformed Gaussian process X (t) = G(X̃ (t)),
will have an excess of high crests and shallow troughs compared to waves in the Gaussian
process X̃ (t). The difference is largest for extreme waves with crests above 1.5 meters, where
the excess is 10 cm, ca 7 %. Such waves, which have crests above three standard deviations,
are quite rare and for moderate waves the difference is negligible.

In order to illustrate the difference in distribution for extreme waves we will simulate a
sample of 4 minutes of X (t) with sampling frequency 2 Hz. The result is put into ysim_t.
In order to obtain the corresponding sample path of the process X̃ we use the transformation
gh, stored in Snorm.tr, and put the result in xsim_t.

dt = 0.5;

ysim_t = spec2sdat(Snorm,240,dt);

xsim_t = dat2gaus(ysim_t,Snorm.tr);

Since the process X̃ (t) always has variance one, in order to compare the Gaussian and
non-Gaussian models we scale xsim_t to have the same first spectral moment as ysim_t,
which will be done by the following commands:

xsim_t(:,2) = sa*xsim_t(:,2);

waveplot(xsim_t,ysim_t,5,1,sa,4.5,’r.’,’b’)

In Figure 2.15 we have waves that are not extremely high and hence the difference be-
tween the two models is hardly noticeable in this scale. Only in the second subplot we can see
that Gaussian waves (dots) have troughs deeper and crests lower than the transformed Gaus-
sian model (solid line). This also indicates that the amplitude estimated from the transformed
Gaussian and Gaussian models are practically identical. Using the empirical transformation
glc instead of the Hermite transformation gh would give errors of ca 11%, which for waves
with higher significant wave height would give considerable underestimation of the crest
height of more extreme waves. Even if the probability for observing an extreme wave during
the period of 20 minutes is small, it is not negligible for safety analysis and therefore the
choice of transformation is one of the most important questions in wave modeling.
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Figure 2.15: Simulated X (t) = G(X̃ (t)) (solid line) compared with X̃ (t) (dots) scaled to have
the same Hs as X (t) for a theoretical spectrum given by Torsethaugen spectrum St.

Since the difference between Gaussian and non-Gaussian model is not so big we may
ask whether 20 minutes of observation of a transformed Gaussian process presented in this
example is long enough to reject the Gaussian model. Using the function testgaussian we
can see that rejection of Gaussian model would occur very seldom. Observe that the sea.dat
is 40 minutes long and that we clearly rejected the Gaussian model. �

In WAFO there are several other programs to simulate random functions or surfaces, both
Gaussian and non-Gaussian; use help simtools. An important class used in fatigue analy-
sis and in modeling the long term variability of sea state parameters are the Markov models.
There is also a program to simulate the output of second order oscillators with nonlinear
spring, when external force is white noise. The nonlinear oscillators can be used to model
nonlinear responses of sea structures.
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CHAPTER 3

Empirical wave characteristics

One of the unique capabilities of WAFO is the treatment of the statistical properties of wave
characteristic. This, and the next chapter, describe how to extract information on distribu-
tions of observables like wave period, wave length, crest height, etc, either directly from data,
or from empirically fitted approximative models, or, in the next chapter, by means of exact
statistical distributions, numerically computed from a spectral model.

We first define the different wave characteristics commonly used in oceanographic engi-
neering and science, and present the WAFO routines for handling them. Then we compare
the empirical findings with some approximative representations of the statistical distributions,
based on empirical parameters from observed sea states. The code for the examples are found
in the m-file Chapter3.m, and it takes a few seconds to run.

3.1 Introduction

3.1.1 The Gaussian paradigm - linear wave theory

In the previous chapter we discussed modeling of random functions by means of Fourier
methods. The signal was represented as a sum of random cosine functions with random am-
plitudes and phases. In linear wave theory those cosine functions are waves traveling in water.
Waves with different frequencies have different speeds, defined by the dispersion relation.
This property causes the characteristic irregularity of the sea surface. Even if it were possible
to arrange a very particular combination of phases and amplitudes, so that the signal looks,
for example, like a saw blade, it will, after a while, change shape totally. The phases will be
almost independent and the sea would again look like a Gaussian random process. On the
other hand an observer clearly can identify moving sea waves. The shape of those waves,
which are often called the apparent waves, since theoretically, those are not mathematical
waves, but are constantly changing up to the moment when they disappear.

The wave action on marine structures is often modeled using linear filters. Then the sea
spectrum, together with the filter frequency function, gives a complete characterization of the
response of the structure. However, often such models are too simplistic and non-linearities

39
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have to be considered to allow more complex responses. Then one may not wish to perform
a complicated numerical analysis to derive the complete response but is willing to accept the
simplification that the response is proportional to the waves. One may also wish to identify
some properties of waves that are dangerous in some way for the particular ocean operation.
Also the apparent waves themselves can be the reason for non-linear response. For example,
for waves with crests higher than some threshold, water may fill a structure and change its
dynamical properties. The combined effect of apparent waves, often described by their height
and wave period, is therefore important in ocean engineering. These aspects are discussed in
more detail in the textbook [46].

The apparent waves will be described by some geometric properties, called wave charac-
teristics, while frequencies of occurrences of waves with specified characteristics will be treated
in the statistical sense and described by a probability distribution. Such distributions can then
be used to estimate the frequency of occurrences of some events important in the design of
floating marine systems, e.g. wave breaking, slamming, ringing, etc.

3.1.2 Wave characteristics in time and space

The wave surface is clearly a two-dimensional phenomenon that changes with time. Its study
should naturally deal with moving two-dimensional objects (surfaces). Theoretical studies
of random surfaces still face major difficulties and are the subject of ongoing research, for
example, [4, 43], for some general studies of Gaussian random surfaces, and [2, 5, 6, 64], for
new wave related results. Related results for Lagrange models, are found in [29, 1, 30, 31, 32,
33].

At present, there are only few programs in WAFO that handle the space-time relations of
waves, and hence in this tutorial, we shall not present any examples of waves in space and time
but limit the presentation to simpler cases of waves in one-dimensional records. By this we
mean the apparent waves extracted from functions (measured signals) with one-dimensional
parameter, either in time or in space. These functions can be extracted from a photograph of
the sea surface as, for example, the instantaneous profile along a line in some fixed horizontal
direction on the sea, or they can be obtained directly as a record taken in time at a fixed position
in space as by means of a wave pole or distance meter. The encountered sea, another important
one-dimensional record, can be collected by means of a ship-borne wave recorder moving
across the random sea.

To analyze collected wave data we need natural and operational definitions of an individ-
ual wave, its period, height, steepness, and possibly some other meaningful characteristics.
There are several possible definitions of apparent wave, and here we shall concentrate mostly
on zero down-crossing waves. Namely, the apparent individual wave at a fixed time or posi-
tion is defined as the part of the record that falls between two consecutive down-crossings of
the zero seaway level (the latter often more descriptively referred to as the still water level).
For individual waves one can consider various natural characteristics, among them apparent
periods and apparent heights (amplitudes). The pictorial definitions of these characteristics are
given in Figure 3.1.

The definitions of the most common wave characteristics are given in Table 3.1. In the
WAFO toolbox, the most important can be retrieved by the help commands for wavedef,
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Figure 3.1: Definition of wave parameters. The notation for the parameters used in our examples
are given in Table 3.1.

perioddef, ampdef, and crossdef, producing the output in Section 3.4.
Having precisely defined the characteristics of interest, one can extract their frequency

(empirical) distributions from a typical sufficiently long record. For example, measurements
of the apparent period and height of waves could be taken over a sufficiently long observa-
tion time to form an empirical two-dimensional distribution. This distribution will represent
some aspects of a given sea surface. Clearly, because of the irregularity of the sea, empirical
frequencies will vary from record to record. However if the sea is in “steady” condition, which
corresponds mathematically to the assumption that the observed random field is stationary
and ergodic, their variability will be insignificant for sufficiently large records. Such limit-
ing distributions (limiting with respect to observation time, for records measured in time,
increasing without bound) are termed the long-run distributions. Obviously, in real a sea we
seldom have a so long period of ”steady” conditions that the limiting distribution will be
reached. On average, one may observe 400-500 waves per hour of measurements, while the
stationary conditions may last from 20 minutes to only a few hours.

Despite of this, a fact that makes these long-run distributions particularly attractive is
that they give probabilities of occurrence of waves that may not be observed in the short
records but still are possible. Hence, one can estimate the intensity of occurrence of waves
with special properties and then extrapolate beyond the observed types of waves. What we
shall be concerned with next is how to compute such distributional properties.

In the following we shall consider three different ways to obtain the wave characteristic
probability densities (or distributions):

• To fit an empirical distribution to the observed (or simulated) data in some parametric
family of densities, and then relate the estimated parameters to some observed wave
climate described by means of significant wave heigh and wave period. Algorithms
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upcrossing wave . . . . . . . . . . . . . . . wave between two successive mean level up-
crossings

downcrossing wave . . . . . . . . . . . . . wave between two successive mean level
downcrossings

wave crest . . . . . . . . . . . . . . . . . . . . . the maximum value between a mean level
upcrossing and the next downcrossing = the
highest point of a wave

wave trough . . . . . . . . . . . . . . . . . . . the minimum value between a mean level
downcrossing and the next upcrossing = the
lowest point of a wave

crest front wave period . . . . . . . . . . Tcf time span from upcrossing to wave crest
crest back (rear) wave period . . . . . Tcb(Tcr) time from wave crest to downcrossing
crest period . . . . . . . . . . . . . . . . . . . Tc time from mean level up- to downcrossing
trough period . . . . . . . . . . . . . . . . . . Tt time from mean level down- to upcrossing
upcrossing period . . . . . . . . . . . . . . Tu time between mean level upcrossings
downcrossing period . . . . . . . . . . . Td time between mean level downcrossings
crest-to-crest wave period . . . . . . . Tcc time between successive wave crests
crest amplitude . . . . . . . . . . . . . . . . Ac crest height above mean level
trough depth . . . . . . . . . . . . . . . . . . At through depth below mean level (At > 0)
upcrossing wave amplitude . . . . . . Hu crest-to-trough vertical distance
downcrossing wave amplitude . . . Hd trough-to-crest vertical distance
wave steepness . . . . . . . . . . . . . . . . . S Generic symbol for wave steepness
min-to-max period . . . . . . . . . . . . . time from local minimum to next local

maximum
min-to-max amplitude . . . . . . . . . . height between local minimum and the

next local maximum
max-to-min period/amplitude . . . similar to min-to-max definitions

Table 3.1: Wave characteristic definitions

to extract waves, estimate the densities and compute some simple statistics will be
presented here in Chapter 3

• To simplify the model for the sea surface to such a degree that explicit computation
of wave characteristic densities (in the simplified model) is possible. Some examples of
proposed models from the literature will also be given here in this chapter.

• To exactly compute the densities from the mathematical form of a random seaway.
This requires computation of infinite dimensional integrals and expectations that have
to be computed numerically. WAFO contains efficient numerical algorithms to com-
pute these integrals, algorithms which do not require any particular form of the sea
surface spectrum. The method are illustrated in Chapter 4 on period, wavelength and
amplitude distributions, for many standard types of wave spectra.
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3.2 Estimation of wave characteristics from data

In this section we shall extract the wave characteristics from a measured signal and then
use non-parametric statistical methods to describe the data, i.e. empirical distributions, his-
tograms, and kernel estimators. (In the last chapter of this tutorial we presents some statistical
tools to fit parametric models.)

It is generally to be advised that, before analyzing sea wave characteristics, one should
check the quality of the data by inspection and by the routine findoutliers used in Sec-
tion 2.1. Then, one usually should remove any present trend from the data. Trends could be
due to tides or atmospheric pressure variations that affect the mean level. De-trending can be
done using the WAFO functions detrend or detrendma.

3.2.1 Wave period

Example 1. (contd.) We begin with extracting the apparent waves and record their period.
The signal sea.dat is recorded at 4 Hz sampling frequency. One of the possible definitions
of period is the time distance between the consecutive wave crests. For this particular variable
it may be convenient to have a higher resolution than 4 Hz and hence we shall interpolate the
signal to a denser grid. This will be obtained by giving an appropriate value to the variable
rate which can be used as input to the WAFO routine dat2wa. The following code will
return crest2crest wave periods Tcc in the variable Tcrcr and return the crest period Tc in
Tc, i.e. the time from up-crossings to the following down-crossing.

xx = load(’sea.dat’);

xx(:,2) = detrend(xx(:,2));

rate = 8;

Tcrcr = dat2wa(xx,0,’c2c’,’tw’,rate);

Tc = dat2wa(xx,0,’u2d’,’tw’,rate);

Next we shall use a kernel density estimator (KDE) to estimate the probability density
function (pdf ) of the crest period and compare the resulting pdf with a histogram of the
observed periods stored in Tc. In order to define a suitable scale for the density we first
compute the mean and maximum of the observed crest periods.

mean(Tc)

max(Tc)

t = linspace(0.01,8,200);

kopt = kdeoptset(’L2’,0);

ftc1 = kde(Tc,kopt,t);

pdfplot(ftc1), hold on

histgrm(Tc,[],[],1)

axis([0 8 0 0.5])

(The parameter L2=0 is used internally in kde, and causes a logarithmic transformation of
the data to ensure that the density is zero for negative values. Run help kdeoptset to see
the definition.)
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Figure 3.2: Kernel estimate of the crest period density observed in sea.dat; solid line: full
KDE, dash dotted line: binned KDE, compared with the histogram of the data.

In Figure 3.2 we can see that many short waves have been recorded (due to relatively high
sampling frequency). The kernel estimate will be compared with the theoretically computed
density in Example 7a in Chapter 4, page 71. �

Remark 3.1 . Note that the program kde can be quite slow for large data sets. If a faster
estimate of the density for the observations is preferred one can use kdebin, which is an
approximation to the true kernel density estimator. An important input parameter in the
program, that defines the degree of approximation, is inc which should be given a value
between 100 and 500. ( A value of inc below 50 gives fast execution times but can lead to
inaccurate results.)

kopt.inc = 128;

ftc2 = kdebin(Tc,kopt); pdfplot(ftc2,’-.’)

title(’Kernel Density Estimates’), hold off

The result is in Figure 3.2 �

3.2.2 Extreme waves – model check

We turn now to joint wave characteristics, e.g. the joint density of half period and crest height
(Tc,Ac), or waveheight and steepness (Ac,S). The program dat2steep identifies waves
and for each wave gives several wave characteristics (use the help function on dat2steep for
a list of computed variables). We begin by examining profiles of waves having some special
property, e.g. with high crests, or that are extremely steep.

Example 1. (contd.) The following code finds a sequence of waves and their characteristics:

method = 0; rate = 8;

[S, H, Ac, At, Tcf, Tcb, z_ind, yn] = ...

dat2steep(xx,rate,method);
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The first preliminary analysis of the data is to find the individual waves which are extreme
by some specified criterion, e.g. the steepest or the highest waves, etc. To do such an analysis
one can use the function spwaveplot(xx,ind), which plots waves in xx that are selected
by the index variable ind. For example, let us look at the highest and the steepest waves.

[Smax indS] = max(S)

[Amax indA] = max(Ac)

spwaveplot(yn,[indA indS],’k.’)

The two waves are shown in Figure 3.3(a). The shape of the biggest wave reminds of the
so called ”extreme” waves. In the following we shall examine whether this particular shape
contradicts the assumption of a transformed Gaussian model for the sea.

This is done as follows. First we find the wave with the highest crest. Then we mark
all positive values in that wave as missing. Next we reconstruct the signal, assuming the
Gaussian model is valid, and compare the profile of the reconstructed wave with the actual
measurements. Confidence bands for the reconstruction will also be plotted. In the previous
chapter we have already used the program reconstruct , and here we shall need some
additional output from the function, to be used to compute and plot the confidence bands.

inds1 = (5965:5974)’; Nsim = 10;

[y1, grec1, g2, test, tobs, mu1o, mu1oStd] = ...

reconstruct(xx,inds1,Nsim);

spwaveplot(y1,indA-10), hold on

plot(xx(inds1,1),xx(inds1,2),’+’)

lamb = 2.;

muLstd = tranproc(mu1o-lamb*mu1oStd,fliplr(grec1));

muUstd = tranproc(mu1o+lamb*mu1oStd,fliplr(grec1));

plot (y1(inds1,1), [muLstd muUstd],’b-’)

axis([1482 1498 -1 3]), hold off

(Note that we have used the function tranproc instead of gaus2dat, since the last
function requires a two column matrix. Furthermore we have to use the index indA-10 to
identify the highest wave in y1. This is caused by the fact that the interpolated signal yn has
a few additional small waves that are not in xx.)

In Figure 3.3(b) the crosses are the removed values from the wave. The reconstructed
wave, plotted by a solid line, is close to the measured. (Observe that this is a simulated
wave, using the transformed Gaussian model, and hence each time we execute the command
the shape will change.) The confidence bands gives limits containing 95% of the simulated
values, pointwise. From the figure we can deduce that the highest wave could have been even
higher and that the height is determined by the particularly high values of the derivatives
at the zero crossings which define the wave. The observed wave looks more asymmetric in
time than the reconstructed one. Such asymmetry is unusual for the transformed Gaussian
waves but not impossible. By executing the following commands we can see that actually the
observed wave is close to the expected in a transformed Gaussian model.

plot(xx(inds1,1),xx(inds1,2),’+’), hold on

mu = tranproc(mu1o,fliplr(grec1));

plot(y1(inds1,1), mu), hold off

We shall not investigate this question further in this tutorial. �
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Figure 3.3: (a): Two waves, the highest and the steepest, observed in sea.dat. (b): Crosses
are observations removed from the highest wave. The reconstructed wave, using transformed
Gaussian model, is given by the middle solid line. Upper and lower curves give the confidence
band defined as the conditional mean of the process plus minus two conditional standard
deviations.

3.2.3 Crest height

We turn now to the kernel estimators of the crest height density. It is well known that for
Gaussian sea the tail of the density is well approximated by the Rayleigh distribution. Wand
and Jones (1995, Chap. 2.9) show that Gaussian distribution is one of the easiest distributions
to obtain a good Kernel Density Estimate from. It is more difficult to find good estimates
for distributions with skewness, kurtosis and multimodality. Here, one can get help by trans-
forming data. This can be done choosing different values of input L2 into the program kde.

Example 1. (contd.) We shall continue with the analysis of the crest height distribution. By
letting L2 = 0.6 we see that the normalplot of the transformed data is approximately linear.
(Note: One should try out several different values for L2. It is also always good practise to try
out several different values of the smoothing parameter; see the help text of kde and kdebin

for further explanation.)

L2 = 0.6;

plotnorm(Ac.^L2)

fac = kde(Ac,{’L2’,L2},linspace(0.01,3,200));

pdfplot(fac)

simpson(fac.x{1},fac.f)

The integral of the estimated density fac is 0.9675 but it should be one. Therefore, when
we use the estimated density to compute different probabilities concerning the crest height
the uncertainty of the computed probability is at least 0.03. We suspect that this is due to the
estimated density being non-zero for negative values. In order to check this we compute the
cumulative distribution using the formula,

P(Ac ≤ h) = 1 −
∫ +∞

h
fAc(x) dx,
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Figure 3.4: (a) Comparison of the empirical distribution of the crest height with the cumulative
distribution computed from the KDE estimator. (b) Zooming in on the tails of distributions
in (a) together with the tail of the transformed Rayleigh approximation (dots) to the crest
height distribution.

where fAc(x) is the estimated probability density of Ac. For the pdf saved in fac the following
code gives an estimate of the cumulative distribution function (cdf ) for crest height and
compares it with the empirical distribution computed from data by means of function edf

or plotedf

Fac = flipud(cumtrapz(fac.x{1},flipud(fac.f)));

Fac = [fac.x{1} 1-Fac];

Femp = plotedf(Ac,Fac);

axis([0 2 0 1]), hold off

Since a kernel density estimator KDE in principal is a smoothed histogram it is not very
well suited for extrapolation of the density to the region where no data are available, e.g. for
the high crests. In such a case a parametric model should be used. In WAFO there is a function
trraylpdf that combines the non-parametric approach of KDE with a Rayleigh density.
Simply, if the Rayleigh variable can be used to described the crests of Gaussian waves then
a transformed Rayleigh variable should be used for the crests of the transformed Gaussian
waves. The method has several nice properties and will be described more in Section 3.3.3.
Here we just use it in order to compare with the non-parametric KDE method.

facr = trraylpdf(fac.x{1},’Ac’,grec1);

Facr = cumtrapz(facr.x{1},facr.f); hold on

plot(facr.x{1},Facr,’.’)

axis([1.25 2.25 0.95 1]), hold off

Figure 3.4(a) shows that our hypothesis that the pdf fac is slightly too low for small
crests seems to be correct. Next from Figure 3.4(b) we can see that also the tail is reasonably
modeled even if it is lighter than, i.e. gives smaller probabilities of high waves than, the one
derived from the transformed Gaussian model. �
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Figure 3.5: Kernel estimate of joint density of crest period Tc and crest height Ac in sea.dat

compared with the observed data (dots). The contour lines are drawn in such a way that
they contain specified (estimated) proportions of data.

3.2.4 Joint crest period and crest height distribution

We shall use the kernel density estimator to find a good estimator of the central part of the
joint density of crest period and crest height. Usually, kernel density estimators give poor
estimates of the tail of the distribution, unless large amounts of data is available. However, a
KDE gives qualitatively good estimates in regions with sufficient data, i.e. in the main part of
the distribution. This is good for visualization (pdfplot) and detecting modes, symmetries
(anti-symmetry) of distributions.

Example 1. (contd.) The following command examines and plots the joint distribution of
crest period Tc = Tcf+Tcb and crest height Ac in sea.dat.

kopt2 = kdeoptset(’L2’,0.5,’inc’,256);

Tc = Tcf+Tcb;

fTcAc = kdebin([Tc Ac],kopt2);

fTcAc.labx={’Tc [s]’ ’Ac [m]’} % make labels for the plot

pdfplot(fTcAc), hold on

plot(Tc,Ac,’k.’), hold off

In Figure 3.5 are plotted 544 pairs of crest period and height. We can see that the kernel
estimate describes the distribution of data quite well. It is also obvious that it can not be used
to extrapolate outside the observation range. In the following chapter we shall compute the
theoretical joint density of crest period and height from the transformed Gaussian model and
compare with the KDE estimate. �
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3.3 Explicit results - parametric wave models

In this section we shall consider the Gaussian sea. We assume that the reference level is zero
and that the spectrum is known. We will present some explicit results that are known and
studied in the literature about wave characteristics. Some of them are exact, others are derived
by simplification of the random functions describing the sea surface.

3.3.1 The average wave

For Gaussian waves the spectrum and the spectral moments contain exact information about
the average behavior of many wave characteristics. The WAFO routines spec2char and
spec2bw compute a long list of wave characteristic parameters.

Example 4. (Simple wave characteristics obtained from spectral density) We start by defin-
ing a JONSWAP spectrum, describing a sea state with Tp = 10 [s], Hm0 = 5 [m]. Type
spec2mom to see what spectral moments are computed.

S = jonswap([],[5 10]);

[m mt]= spec2mom(S,4,[],0);

The most basic information about waves is contained in the spectral moments. The vari-
able mt now contains information about what kind of moments have been computed, in
this case spectral moments up to order four (m0, . . . , m4). Next, the irregularity factor �,
significant wave height, zero crossing wave period, and peak period can be computed.

spec2bw(S)

[ch Sa2] = spec2char(S,[1 3])

The interesting feature of the program spec2char is that it also computes an estimate
of the variance of the characteristics, given the length of observations (assuming the Gaussian
sea); see [28], [71] and [74] for more detailed discussion. For example, for the JONSWAP

Gaussian sea, the standard deviation of significant wave height estimated from 20 minutes of
observations is approximately 0.25 meter. �

3.3.2 Explicit approximations of wave distributions

In the module wavemodels, we have implemented some of the approximative models that
have been suggested in the literature. To get an overview of the routines in the module, use
the help function on wavemodels.

We will investigate two suggested approximations for the joint pdf of (Tc,Ac) (for the
nomenclature, see the routines perioddef and ampdef in the module docs). Both functions
need spectral moments as inputs. One should bear in mind that the models only depend on
a few spectral moments and not on the full wave spectrum.
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Figure 3.6: Longuet-Higgins model for joint pdf of crest period Tc and crest height Ac. Spectrum:
JONSWAP with Tp = 10 [s], Hm0 = 5 [m]. (a) linear Gaussian sea, (b) transformed
Gaussian sea.

Model by Longuet-Higgins

Longuet-Higgins, [37, 38], derived his approximative distribution by considering the joint
distribution of the envelope amplitude and the time derivative of the envelope phase. The
model is valid for narrow-band processes. It seams to give relatively accurate results for big
waves, e.g. for waves with significant amplitudes.

The Longuet-Higgins density depends, besides the significant wave height Hs and peak
period Tp, on the spectral width parameter � = m0m2

m2
1

− 1, which can be calculated by the
command spec2bw(S,’eps2’), (for a narrow-band process, � ≈ 0). The explicit density
is given by

f LH
Tc ,Ac

(t, x) = cLH

(x
t

)2
exp

{
−x2

8
[1 + �−2(1 − t−1)2]

}
,

where

cLH =
1
8

(2�)−1/2�−1[1 + (1 + �2)−1/2]−1.

The density is calculated by the function lh83pdf.

Example 4. (contd.) For the Longuet-Higgins approximation we use the spectral moments
just calculated.

t = linspace(0,15,100);

h = linspace(0,6,100);

flh = lh83pdf(t,h,[m(1),m(2),m(3)]);

In WAFO we have modified the Longuet-Higgins density to be applicable for transformed
Gaussian models. Following the examples from the previous chapter we compute the trans-
formation proposed by Winterstein and combine it with the Longuet-Higgins model.

[sk, ku] = spec2skew(S);
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sa = sqrt(m(1));

gh = hermitetr([],[sa sk ku 0]);

flhg = lh83pdf(t,h,[m(1),m(2),m(3)],gh);

In Figure 3.6 the densities flh and flhg are compared. The contour lines are drawn in
such a way that they contain predefined proportions of the total probability mass inside the
contours. We can see that including some nonlinear effects gives somewhat higher waves for
the JONSWAP spectrum. �

Model by Cavanié et al.

Another explicit density for the crest height was proposed by Cavanié et al., [13]. Here any
positive local maximum is considered as a crest of a wave, and then the second derivative
(curvature) at the local maximum defines the wave period by means of a cosine function with
the same height and the same crest curvature.

The model uses the parameter � and a higher order bandwidth parameter1 
, defined by


 =

√
1 − m2

2

m0m4
;

where, for a narrow-band process, 
 ≈ 0. The Cavanié distribution is given by

f CA
Tc ,Ac

(t, x) = cCA
x2

t5
exp

{
− x2

8
2t4

[(
t2 −

(
1 − 
2

1 + �2

))2

+ �2

(
1 − 
2

1 + �2

)]}
,

where

cCA =
1
4

(1 − 
2)(2�)−1/2
−1�2
−1(1 + �2)−2,

�2 =
1
2

[1 + (1 − 
2)1/2],

� = 
2/(1 − 
2).

The density is computed by

t = linspace(0,10,100);

h = linspace(0,7,100);

fcav = cav76pdf(t,h,[m(1) m(2) m(3) m(5)],[]);

and a contour plot of the pdf is obtained by pdfplot(fcav); see Figure 3.7.

3.3.3 Rayleigh approximation for wave crest height

There are several densities proposed in the literature to approximate the height of a wave crest
or its amplitude. Some of them are programmed in WAFO; execute help wavemodels for a
list of them. For Gaussian sea the most simple and most frequently used model is the Rayleigh

1The value of ε may be calculated by spec2bw(S,’eps4’)
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Figure 3.7: (a) Contour lines of the joint density of crest period and crest height proposed by
Cavanié et al, for Gaussian sea with JONSWAP spectrum (Tp = 10 [s], Hm0 = 5 [m]).
(b) The tail of the empirical distribution of crest height (top), trough height (middle)
and amplitude (bottom) compared with Rayleigh approximation (dots) and transformed
Rayleigh model with Hermite transformation.

density. The standardized Rayleigh variable R has the density given by f (r) = r exp(−r2/2),
x > 0. It is well known that for Gaussian sea the Rayleigh approximation works very well for
high waves, and actually it is a conservative approximation since we have

P(Ac > h) ≤ P(R > 4 ∗ h/Hs) = e−8h2/H 2
s ,

see [58]. In that paper it is also shown that for any sea wave model with crossing intensity
�(u), one has P(Ac > h) ≤ �(u)/�(0). The approximation becomes more accurate as the level
h increases.

The crossing intensity �(u) is given by Rice’s formula , Rice (1944), and it can be com-
puted when the joint density of sea level X (t) and its derivative X ′(t) is known, see Sec-
tion 2.2.3,

�(u) =

∫ +∞

0
zfX (t),X ′(t)(u, z) dz.

For a Gaussian sea it can be computed explicitly

�(u) =
1
Tz

e−8u2/H 2
s .

For non-linear wave models with random Stokes waves the crossing intensity has to be com-
puted using numerical integration; see the work by Machado and Rychlik, [39].

Knowing the crossing intensity �(u) one can compute the transformation g, by using
the routine lc2tr, such that the transformed Gaussian model has crossing intensity equal
to �(u). Consequently, we have that P(Ac > h) ≤ P(R > g(h)) = 1 − P(G(R) ≤ h).
The function trraylpdf computes the pdf of G(R). (Obviously the function works for any
transformation g.)
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In previous examples we used the estimated crossing intensity to compute the transforma-
tion and then approximated the crest height density using the transformed Rayleigh variable.
The accuracy of the approximation for the high crests in the data set xx = sea.dat was
checked, see Figure 3.4(b). A more extensive study of the applicability of this approximation
is done in [58].

Example 5. (Rayleigh approximation of crest height from spectral density) In this example
we shall use a transformed Rayleigh approximation for crest height derived from the sea
spectrum. In order to check the accuracy of the approximations we shall use the estimated
spectrum from the record sea.dat.

xx = load(’sea.dat’);

x = xx;

x(:,2) = detrend(x(:,2));

SS = dat2spec2(x);

[sk, ku, me, si ] = spec2skew(SS);

gh = hermitetr([],[si sk ku me]);

Hs = 4*si;

r = (0:0.05:1.1*Hs)’;

fac_h = trraylpdf(r,’Ac’,gh);

fat_h = trraylpdf(r,’At’,gh);

h = (0:0.05:1.7*Hs)’;

facat_h = trraylpdf(h,’AcAt’,gh);

pdfplot(fac_h), hold on

pdfplot(fat_h), hold off

Next, we shall compare the derived approximation with the observed crest heights in x.
As before, we could use the function dat2steep to find the crests. Here, for illustration only,
we shall use dat2tc to find the crest heights Ac and trough depth At.

TC = dat2tc(xx, me);

tc = tp2mm(TC);

Ac = tc(:,2);

At = -tc(:,1);

AcAt = Ac+At;

Finally, the following commands will give the cumulative distributions for the computed
densities.

Fac_h = [fac_h.x{1} cumtrapz(fac_h.x{1},fac_h.f)];

subplot(3,1,1)

Fac = plotedf(Ac,Fac_h); hold on

plot(r,1-exp(-8*r.^2/Hs^2),’.’)

axis([1. 2. 0.9 1])

Fat_h = [fat_h.x{1} cumtrapz(fat_h.x{1},fat_h.f)];

subplot(3,1,2)

Fat = plotedf(At,Fat_h); hold on

plot(r,1-exp(-8*r.^2/Hs^2),’.’)
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axis([1. 2. 0.9 1])

Facat_h = [facat_h.x{1} cumtrapz(facat_h.x{1},facat_h.f)];

subplot(3,1,3)

Facat = plotedf(AcAt,Facat_h); hold on

r2 = (0:05:2.1*Hs)’;

plot(r2,1-exp(-2*r2.^2/Hs^2),’.’)

axis([1.5 3.5 0.9 1]), hold off

In Figure 3.7(b) we can see some differences between the observed crest and trough distri-
butions and the one obtained from the transformation gh. However, it still gives a much bet-
ter approximation than the standard Rayleigh approximation (dots). As it was shown before,
using the transformation computed from the crossing intensity, the transformed Rayleigh ap-
proach is giving a perfect fit. Finally, one can see that the Rayleigh and transformed Rayleigh
variables give too conservative approximations to the distribution of wave amplitude. �
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3.4 WAFO wave characteristics

3.4.1 spec2char

help spec2char

SPEC2CHAR Evaluates spectral characteristics and their variance

CALL: [ch r chtext] = spec2char(S,fact,T)

ch = vector of spectral characteristics

r = vector of the corresponding variances given T

chtext = a cellvector of strings describing the elements of ch

S = spectral struct with angular frequency

fact = vector with factor integers, see below.

(default [1])

T = recording time (sec) (default 1200 sec = 20 min)

If input spectrum is of wave number type, output are factors

for corresponding ’k1D’, else output are factors for ’freq’.

Input vector ’factors’ correspondence:

1 Hm0 = 4*sqrt(m0) Significant wave height

2 Tm01 = 2*pi*m0/m1 Mean wave period

3 Tm02 = 2*pi*sqrt(m0/m2) Mean zero-crossing period

4 Tm24 = 2*pi*sqrt(m2/m4) Mean period between maxima

5 Tm_10 = 2*pi*m_1/m0 Energy period

6 Tp = 2*pi/{w | max(S(w))} Peak period

7 Ss = 2*pi*Hm0/(g*Tm02^2) Significant wave steepness

8 Sp = 2*pi*Hm0/(g*Tp^2) Average wave steepness

9 Ka = abs(int S(w) exp(i*w*Tm02) dw) / m0

Groupiness parameter

10 Rs = se help spec2char Quality control parameter

11 Tp = 2*pi*int S(w)^4 dw Peak Period

------------------ (more robust estimate)

int w*S(w)^4 dw

12 alpha = m2/sqrt(m0*m4) Irregularity factor

13 eps2 = sqrt(m0*m2/m1^2-1) Narrowness factor

14 eps4 = sqrt(1-m2^2/(m0*m4)) = sqrt(1-alpha^2) Broadness factor

15 Qp = (2/m0^2)int_0^inf w*S(w)^2 dw Peakedness factor

Order of output is same as order in ’factors’

The variances are computed with a Taylor expansion technique

and is currently only available for factors 1,2 and 3.



56 CHAPTER 3. EMPIRICAL WAVE CHARACTERISTICS

3.4.2 spec2bw

help spec2bw}

SPEC2BW Evaluates some spectral bandwidth and irregularity factors

CALL: bw = spec2bw(S,factors)

bw = vector of factors

S = spectrum struct

factors = vector with integers, see below. (default [1])

If input spectrum is of wave-number type, output are factors for

corresponding ’k1D’, else output are factors for ’freq’.

Input vector ’factors’ correspondence:

1 alpha=m2/sqrt(m0*m4) (irregularity factor)

2 eps2 = sqrt(m0*m2/m1^2-1) (narrowness factor)

3 eps4 = sqrt(1-m2^2/(m0*m4))=sqrt(1-alpha^2) (broadness factor)

4 Qp=(2/m0^2)int_0^inf f*S(f)^2 df (peakedness factor)

Order of output is the same as order in ’factors’

Example:

S=demospec;

bw=spec2bw(S,[1 2 3 4]);
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3.4.3 wavedef

help wavedef

WAVEDEF wave definitions and nomenclature

Definition of trough and crest:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A trough (t) is defined as the global minimum between a

level v down-crossing (d) and the next up-crossing (u)

and a crest (c) is defined as the global maximum between

a level v up-crossing and the following down-crossing.

Definition of down- and up-crossing waves:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A level v-down-crossing wave (dw) is a wave from a

down-crossing to the following down-crossing.

Similarly a level v-up-crossing wave (uw) is a wave from

an up-crossing to the next up-crossing.

Definition of trough and crest waves:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A trough to trough wave (tw) is a wave from a trough (t)

to the following trough.

The crest to crest wave (cw) is defined similarly.

Definition of min2min and Max2Max wave:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A min2min wave (mw) is defined starting from a minimum (m)

and ending in the following minimum.

A Max2Max wave (Mw) is a wave from a maximum (M) to

the next maximum (all waves optionally rainflow filtered).

<----- Direction of wave propagation

<------Mw-----> <----mw---->

M : : c :

/ \ M : / \_ : c_ c

F \ / \m/ \ : /: \ /:\ level v

------d--------u----------d-------u----d--------u---d--------

\ /: \ : /: : :\_ _/ : :\_ L

\_ / : \_t_/ : : : \t_/ : : \m/

\t/ <-------uw---------> : <-----dw----->

: : : :

<--------tw--------> <------cw----->

(F= first value and L=last value).

See also: tpdef, crossdef, dat2tc, dat2wa, dat2crossind
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3.4.4 perioddef

help perioddef

PERIODDEF wave periods (lengths) definitions and

nomenclature

Definition of wave periods (lengths):

---------------------------------------

<----- Direction of wave propagation

<-------Tu-------->

: :

<---Tc-----> :

: : : <------Tcc---->

M : c : : : :

/ \ : M / \_ : : c_ c

F \ :/ \m/ \: :/ \ / \ level v

------d--------u----------d------u----d--------u---d--------

\ / \ / :\_ _/: :\_ L

\_ / \t_/ : \t_/ : : \m/

\t/ : : : :

:<-------Ttt----->: <---Tt---> :

:<----Td---->:

Tu = Wave up-crossing period

Td = Wave down-crossing period

Tc = Crest period, i.e., period between up-crossing and

the next down-crossing

Tt = Trough period, i.e., period between down-crossing and

the next up-crossing

Ttt = Trough2trough period

Tcc = Crest2crest period



3.4. WAFO WAVE CHARACTERISTICS 59

<----- Direction of wave propagation

<--Tcf-> Tuc

: : <-Tcb-> <->

M : c : : : :

/ \ : M / \_ c_ : : c

F \ :/ \m/ \ / \___: :/ \ level v

------d---------u----------d---------u-------d-----u---d-------

:\_ / \ __/: \ / \_ L

: \_ / \_t_/ : \t/ \m/

: \t/ : :

: : : :

<-Ttf-> <-Ttb->

Tcf = Crest front period, i.e., period between up-crossing

and crest

Tcb = Crest back period, i.e., period between crest and

down-crossing

Ttf = Trough front period, i.e., period between

down-crossing and trough

Ttb = Trough back period, i.e., period between trough and

up-crossing

Also note that Tcf and Ttf can also be abbreviated by their

crossing marker, e.g. Tuc (u2c) and Tdt (d2t), respectively.

Similar rules apply to all the other wave periods and wave

lengths. (The nomenclature for wave length is similar, just

substitute T and period with L and length, respectively)

<----- Direction of wave propagation

<--TMm-->

<-TmM-> : :

M : : M :

/ \ : M /:\_ : M_ M

F \ : / \m/ : \ : /: \ / \

\ : / : \ : / : \ / \

\ : / : \ : / : \_ _/ \_ L

\_ : / : \_m_/ : \m_/ \m/

\m/ : : : :

<-----TMM-----> <----Tmm----->

TmM = Period between minimum and the following Maximum

TMm = Period between Maximum and the following minimum

TMM = Period between Maximum and the following Maximum

Tmm = Period between minimum and the following minimum

See also: wavedef, ampdef, crossdef, tpdef
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3.4.5 ampdef

help ampdef

AMPDEF wave heights and amplitude definitions and

nomenclature

Definition of wave amplitude and wave heights:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

<----- Direction of wave propagation

...............c_..........

| /| \ |

Hd | _/ | \ | Hu

M | / | \ |

/ \ | M / Ac | \_ | c_

F \ | / \m/ | \ | / \ level v

------d----|---u------------------d---|---u----d------

\ | /| \ | / \L

\_ | / | At \_|_/

\|/..| t

t

Ac = crest amplitude

At = trough amplitude

Hd = wave height as defined for down-crossing waves

Hu = wave height as defined for up-crossing waves

See also: wavedef, ampdef, crossdef, tpdef
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3.4.6 crossdef

help crossdef

CROSSDEF level v crossing definitions and nomenclature

Definition of level v crossing:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Let the letters ’m’, ’M’, ’F’, ’L’,’d’ and ’u’ in the

figure below denote local minimum, maximum, first value, last

value, down- and up-crossing, respectively. The remaining

sampled values are indicated with a ’.’. Values that are

identical with v, but do not cross the level is indicated

with the letter ’o’.

We have a level up-crossing at index, k, if

x(k) < v and v < x(k+1)

or if

x(k) == v and v < x(k+1) and x(r) < v for some

di < r <= k-1

where di is the index to the previous down-crossing.

Similarly there is a level down-crossing at index, k, if

x(k) > v and v > x(k+1)

or if

x(k) == v and v > x(k+1) and x(r) > v for some

ui < r <= k-1

where ui is the index to the previous up-crossing.

The first (F) value is a up-crossing if x(1) = v and x(2) > v.

Similarly, it is a down-crossing if x(1) = v and x(2) < v.

M

. . M M

. . . . . .

F d . . L level v

----------------------u-------d-------o---------------------

. . . . u

. m

m

See also: perioddef, wavedef, tpdef, findcross, dat2tp



62 CHAPTER 3. EMPIRICAL WAVE CHARACTERISTICS



CHAPTER 4

Exact wave characteristics

The wave characteristic distributions in Chapter 3 have been empirical, either constructed di-
rectly from data, or from a specific model fitted by means of data, via a few spectral moments.
In this chapter we will use the Gaussian paradigm, described in Section 3.1.1, to produce ex-
act wave characteristic distributions directly from an assumed spectral density, without any
further assumptions than Gaussianity and a following transformation. This is a unique facil-
ity in WAFO, not available in any other wave analysis software. The routines are collected in
the module trgauss and they are listed in Section 4.4.

The functions are the results of long time research at Lund University, see [48] and [34],
where a review of the historical development and the mathematical tools behind the algo-
rithms are given.

The MATLAB code for the examples in this chapter are found in Chapter4.m and is
takes 20 minutes to run on a 2.93 GHz 64-bit PC, in fast mode.

4.1 Exact wave distributions routines

By means of a number of examples, we shall demonstrate the most important functions for
computation of exact wave probability distributions. The variables are the crest and wave
periods, Tc, Tu = Tc+Tt, the corresponding crest length and wave length variables, Lc,
Lu = Lc+Lt, and crest and trough height Ac, At, and we compute both marginal densities
and joint densities for combination of variables. The same functions compute densities for
trough period, length, and height, as for the corresponding crest variables. The common form
of the routines is spec2yyxxx .

In WAFO there are also functions computing exact densities for other wave characteristics,
which will not be presented here. The WAFO routines are collected in the module trgauss.
Use the help function on trgauss to see the following list of all the routines.

63
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4.2 Marginal distributions of wave characteristics

In this section we analysis the marginal distributions of crest and wave period/length vari-
ables, and how they depend on the crest height. We also discuss the numerical accuracy of
the WAFO routines, and how to obtain a reasonable compromise between accuracy and com-
putational speed. More example on this matter will follow in subsequent sections. We start
will some introductory examples.

4.2.1 Crest period, crest length and crest height

One of the most useful functions in WAFO is the routine spec2tpdf, which computes the
density function for crest and trough period, as well as for the corresponding length variables.
The function also computes the density of waves with crest above a specified height h. This is
a useful option allowing computation of the probability that a crest is higher than a specified
threshold. It can also be used to provide information about the distribution of the period
(length) of such high waves.

The function spec2tpdf performs all necessary transformations, scalings, etc, making
it very flexible. It handles different spectra as inputs. Which kind of density is computed
(output) is defined by the variable def that takes values ’Tc’ for crest period, ’Lc’ for
crest length, ’Tt’ for trough period, and ’Lt’ for trough length. The transformation is only
affecting the value of the still water level u and the threshold h. The function spec2tpdf

allows any value for the still water level; if u it is not equal to the most frequently crossed level
then the densities of Tc and Tt are not identical.

Example 6. (Torsethaugen waves) We start by defining the same frequency spectrum,
S(�), as we used in Chapter 1; we choose a Torsethaugen spectrum with parameters Hm0 =
6 [m], Tp = 8 [s], describing significant wave height and primary peak period, respectively;
see Figure 1.2. The energy is divided between two peaks, corresponding to contributions from
wind and swell. We shall also use the two directional spectra from Chapter 1 with frequency
dependent, SD1, and frequency independent, SD12, spreading.

S1 = torsethaugen([],[6 8],1);

D1 = spreading(101,’cos’,pi/2,[15],[],0);

D12 = spreading(101,’cos’,0,[15],S1.w,1);

SD1 = mkdspec(S1,D1);

SD12 = mkdspec(S1,D12);

Example 6a. Crest period: We begin with the density of crest period, which (obviously)
is identical for all three spectra S1, SD1, and SD12. The computed density is a result of a
numerical integration of a theoretically derived formula, which is described, e.g., in [35].
The algorithm gives an upper bound (and if requested lower bound too) for the density.
Consequently, if the integral of the computed density, over all periods, is close to one it
implies that the density is computed with high accuracy.

f_tc_4 = spec2tpdf(S1,[],’Tc’,[0 12 61],[],4);

f_tc_1 = spec2tpdf(S1,[],’Tc’,[0 12 61],[],-1);
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Figure 4.1: (a) Densities f tc 1 (solid), f tc 2 (dashed), and f tc 4 (dash dotted) of crest
period Tc for Torsethaugen spectrum. (b) Densities of crest length Lc, (most peaked curve)
compared to the density when restricted to waves with crest height Ac more than 10%, 20%,
30%, 40%, 50% of the significant wave height above the still water level, for Gaussian
sea with the Torsethaugen spectrum with Hs = 6[m]. Lowest curve corresponds to Ac >

3[m].

pdfplot(f_tc_4,’-.’), hold on

pdfplot(f_tc_1), hold off

simpson(f_tc_4.x{1},f_tc_4.f)

simpson(f_tc_1.x{1},f_tc_1.f)

The crest period density is shown in Figure 4.1(a). The integral of the density f tc 4

computed using the function simpson is 1.005, showing the high accuracy of the approx-
imation. The density f tc 1 uses another algorithm, which is faster, and it has the inte-
gral 0.9993. The computation time is 1.4 and 0.5 seconds, respectively, on a PC, Pen-
tium 2.9 GHz. The computation time depends on the required accuracy and how broad
banded the spectrum is. For example, the same accuracy is achieved for the JONSWAP spec-
trum in about half the time. The computation time increases if there is a considerable prob-
ability for long waves with low crests.

The last argument in the calls above to spec2tpdf is worth special attention, and we will
later study its effect in detail. It controls the numerical algorithm that computes the density.
Here, we only note that a positive choice, here 4, gives an upper bound to the density, more
accurate and more time consuming the higher the value, while a negative value, here -1,
given an almost unbiased value in much shorter time.

Example 6b. Crest length: We then turn to the density of crest length for the Torsethaugen
spectrum. It can be computed using the same function spec2tpdf, we just change the input
’Tc’ to ’Lc’.

f_Lc = spec2tpdf(S1,[],’Lc’,[0 125 251],[],-1);
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pdfplot(f_Lc,’-.’), hold on

The crest length density has a sharp peak for very short waves – the wave-number spec-
trum is much more broad banded that the frequency spectrum; see [36] for a general com-
parison of wave period and wave length. However, the short waves have small crests and
should be considered as ’noise’ rather than as apparent waves. Consequently, we may wish
to compute the proportion of waves that have crest higher than a certain proportion of the
significant wave height, e.g. 25%, i.e. one standard deviation, Hs/4 = 1.5[m], and give the
density of the crest length for these waves. This can be done by specifying an extra argument
in the call to spec2tpdf.

f_Lc_1 = spec2tpdf(S1,[],’Lc’,[0 125 251],1.5,-1);

pdfplot(f_Lc_1)

Figure 4.1(b) presents the results when the crest height is restricted to more than 10%,
20%, 30%, 40%, 50% of the significant wave height. and we can see that all short waves
in fact were small. (The algorithm produces some very small negative density values. These
have been removed before the plotting; see the following section on numerical accuracy,
Section 4.2.2.)

The proportion of waves with crests above 1.5 [m] (one standard deviation) is computed
by the following commands.

simpson(f_Lc.x{1},f_Lc.f)

simpson(f_Lc_1.x{1},f_Lc_1.f)

Taking the ratio, we can see that more than half of the waves are small, about 37% of the
waves have crests above 1.5 [m]. Similar calculations for the curves in Figure 4.1(b), give the
proportions of crests above the levels in Table 4.1.

level [m] 0.6 1.2 1.5 1.8 2.4 3.0
proportion above level 0.607 0.435 0.367 0.305 0.191 0.102
CDF of crest height Ac 0.391 0.563 0.630 0.693 0.806 0.895

Table 4.1: Second row: proportion of crest heights above a level, computed by spec2tpdf; Third
row: CDF of crest height computed by spec2acdf.

Example 6c. Crest height The table of the proportion of high crest waves is related to the
cumulative distribution function (cdf ) of the crest height Ac in a natural way. The WAFO

routine spec2acdf computes the cdf directly, both for the crest height over a crest period
in time and for the crest height over a crest length in space. Figure 4.2 shows the empirical
distribution of Ac in a long simulation in time, and the theoretical distribution functions for
crest height in time and in space, as well as the Rayleigh approximation from Section 3.3.3.
The simulations contain 9255 space wave crests and 5823 time wave crests. The agreement
between the empirical and theoretical distribution function are very good. The Rayleigh dis-
tribution gives a good approximation of the time crest height for large crest values but over-
estimates the smallest crests.
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The third row in Table 4.1 shows the cdf values for crest height in space computed by
spec2acdf. The sum of the second and third row should be one; all sums in the table are
greater than 0.997.

clf; Hs = 6;

r = (0:0.12:1.1*Hs)’;

F_Ac_s1_T = spec2acdf(S1,[],’Tc’,[0 12 61],r,-1); hold on

T = spec2sdat(S1,[40000,100],0.01);

[SteepT,HeightT,AcT] = dat2steep(T);

plotedf(AcT,’-.’)

F_Ac_s1_L = spec2acdf(S1,[],’Lc’,[0 125 251],r,-1);

L = spec2sdat(spec2spec(S1,’k1d’),[40000 100],0.1);

[SteepL,HeightL,AcL] = dat2steep(L);

plotedf(AcL,’-.’)

plot(r,1-exp(-8*r.^2/Hs^2)), hold off
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Figure 4.2: Cumulative distribution (cdf ) for crest height Ac with Torsethaugen spectrum.
Curves most to the left = theoretical (solid) and empirical (dash dotted) cdf for Ac over
a crest length. Middle curves show theoretical and empirical cdf for Ac over a crest period.
Curve most to the right is the cdf for the Rayleigh approximation.

Example 6d. Directional spreading: We finish this example by considering the Torsethau-
gen spectrum with the two different spreading functions SD1 and SD12. In Figure 1.5 we
presented simulations of the sea surfaces with these spectra. From the figures we expect that
the two crest length distributions should be different. (Obviously, the crest period densities
are identical). In the directional sea we have to define the azimuth of the line for which the
crest length should be computed (the default value is zero). Now, the directional spectra SD1
and SD12 have different main wave directions, 90o and 0o degrees, respectively, and hence
we shall choose different azimuths for the two spectra. More precisely, for both cases we shall
consider heading waves; this is achieved using the function spec2spec.

f_Lc_d1 = spec2tpdf(spec2spec(SD1,’rotdir’,pi/2),[],...
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Figure 4.3: Computed pdf (left) and cdf (right) for Lc in Gaussian sea with Torsethaugen spec-
trum with different spreading: unidirectional spectrum S1 (solid line) ; frequency indepen-
dent spreading SD1 (dash-dotted line); frequency dependent spreading SD12 (dashed line).

’Lc’,[0 200 401],[],-1);

pdfplot(f_Lc_d1,’-.’), hold on

f_Lc_d12 = spec2tpdf(SD12,[],’Lc’,[0 200 401],[],-1);

pdfplot(f_Lc_d12), hold off

figure(2)

dx = f_Lc.x{1}(2)-f_Lc.x{1}(1);

dx1 = f_Lc_d1.x{1}(2)-f_Lc_d1.x{1}(1);

dx12 = f_Lc_d12.x{1}(2)-f_Lc_d12.x{1}(1);

plot(f_Lc.x{1},cumsum(f_Lc.f)*dx), hold on

plot(f_Lc_d1.x{1},cumsum(f_Lc_d1.f)*dx1,’-.’)

plot(f_Lc_d12.x{1},cumsum(f_Lc_d12.f)*dx12,’--’), hold off

As expected, after examination of the simulated sea surfaces in Figure 1.5, the crest length
for the two directional spectra are different. The sea with frequency dependent spreading
seems to be more irregular. We can see in Figure 4.3 that waves with frequency independent
spreading are only slightly longer than the waves in unidirectional sea, while the crest length
of both seas are much shorter than for frequency dependent spreading. From Figure 1.4 it is
clear that the spectrum with frequency independent spreading function is more similar to the
unidirectional spectrum than that with the frequency dependent spreading. �

4.2.2 Numerical accuracy and computational speed

The basic algorithm in the routine spec2tpdf computes a finite-dimensional approximation
to an ”infinite-dimensional” normal probability. The last input in all the previous calls to the
routine is a parameter called nit, and it determines both the integration method and the
dimensionality of the computed integral. Important references on how to compute normal
probabilities are [3, 10, 11, 18, 19, 55].
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The nit parameter can be positive, negative, and zero. Positive nit values use numerical,
deterministic, integration algorithms, while negative values use a simulation technique based
on importance sampling; see [10, 11] for a review of different methods.

The methods with positive nit are very reliable and have been tested on different wave
problems since the first version was used already in 1987; see [53]. As default, they give an
upper bound to the densities. The integration methods corresponding to negative nit values
are still under tests and modifications. However, they are often much faster and also very
accurate in cases when the deterministic method has troubles with too long execution times.

Although the method with negative nit is based on simulation the accuracy is still con-
trolled. If the number of simulations is too small to achieve the required accuracy the program
gives an error statement with an estimate of the possible error in the computed density.

One should be aware that both positive and negative nit values can produce negative
density values with spec2tpdf. This is the result of the way the densities are computed,
namely as differences between ”cumulative distribution type” functions. Then, small numer-
ical variations may cause negative density estimates, mostly for very small density values.

The routine spec2tpdf is the MATLAB interface to a FORTRAN 95 program. All pro-
grams computing exact densities of different wave characteristics can be reformulated in such
a way that the density is written as a certain multidimensional integral of a function of Gaus-
sian variables; see [35] for more details. This integral is computed using a FORTRAN module
called RIND. There is also a MATLAB interface called rind which can be used to test pro-
grams for new wave characteristics.

An example is a function spec2tpdf2 which uses the program rind. The program is
slower than spec2tpdf, and it does not have an option that allows to choose waves with
crest above some level, but on the other hand it is easier to use for experimentation, and it
can also be used to learn how to create own programs.

Besides the parameter nit, the input parameter speed will also control the accuracy of
the computations in module trgauss; see the help text to the routines for information.

Example 6. (contd.) We shall exemplify the use of the parameter nit by computing the
crest length density for the directional spectrum with frequency independent spreading. We
shall also use the slower program spec2tpdf2 for illustration.

opt1 = rindoptset(’speed’,5,’method’,3);

SD1r = rotspec(SD1,pi/2);

f_Lc_d1_5 = spec2tpdf(SD1r,[],’Lc’,[0 200 201],[],5);

f_Lc_d1_3 = spec2tpdf(SD1r,[],’Lc’,[0 200 201],[],3);

f_Lc_d1_2 = spec2tpdf(SD1r,[],’Lc’,[0 200 201],[],2);

f_Lc_d1_0 = spec2tpdf(SD1r,[],’Lc’,[0 200 201],[],0);

f_Lc_d1_neg = spec2tpdf(SD1r,[],’Lc’,[0 200 201],[],-1);

f_Lc_d1_n4 = spec2tpdf2(SD1r,[],’Lc’,[0 200 201],opt1);

pdfplot(f_Lc_d1_5), hold on

pdfplot(f_Lc_d1_2), pdfplot(f_Lc_d1_3)

pdfplot(f_Lc_d1_0), pdfplot(f_Lc_d1_neg)

pdfplot(f_Lc_d1_n4,’LineWidth’,2,’-.’)

simpson(f_Lc_d1_n4.x{1},f_Lc_d1_n4.f)
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Figure 4.4: (a) Approximations by different methods and accuracy of the crest length for the
directional spectrum with frequency independent spreading. The top solid curves are com-
puted with positive nit = 0 (top), 2, 3, 5, and negative nit = -1 (bottom),
in routine spec2tpdf, while the dash-dotted curve has negative nit with routine
spec2tpdf2. (b) Solid curve = the empirical density of crest length Lc with crest height
Ac > 1.5[m], dash-dotted curve is the normalized computed density f Lc 1.

The execution times for the densities were 270 seconds, 11 seconds, 2.4 seconds, 0.3
seconds, 7.7 seconds, and 5.9 seconds, respectively. In Figure 4.4(a) the different approxima-
tions are presented and we can see how the density decreases with increasing positive nit.
The negative nit involves some random number integration methods, but we can hardly see
that the computed density is actually a random function. Most of problems are less numerical
demanding and nit=2 often suffices, but here clearly the negative nit is preferable.

In Figure 4.4(b) we compare an empirical density of crest length Lc, conditioned on crest
height Ac > 1.5[m], based on almost 500 000 observed waves, with the normalized density
f Lc 1 from page 65, computed with nit = -1. The agreement is almost perfect. �

4.2.3 Wave period and wave length

In the previous sections we described routines for the marginal distributions of crest and
trough periods, and height, Tc, Tt, Ac, and the corresponding crest and trough lengths
length, Lc, Lt. We also showed how to limit the population to waves for which the crest
(trough) amplitudes are above some predetermined threshold.

We now turn to the wave period, Tu = Tc+Tt, which is the time between two successive
upcrossings of the still water level u. It is related to, but not equal to, the crest-to-crest wave
period Tcc, which is the time span between two successive crests. The density of Tu can
be computed using the function spec2tccpdf. The wave length Lu or encountered wave
period can also be computed by spec2tccpdf, with just a few inputs to be modified; see the
help text. Hence, these variables shall not be discussed here any more.
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The computations using spec2tccpdf are slower than those using spec2tpdf, since
one needs to compute the joint density of Tc and Tt and then change variable to integrate
the convolution to get Tu = Tc+Tt. See also the discussion in the remark in the previous
section about speed of programs. It should be mentioned that, in addition to the methods
to reduce computation time, one of the best methods to speed up computation is to cut off
high frequencies in the spectrum. The syntax of spec2tccpdf is almost identical to that of
spec2tpdf, and hence we limit ourselves to a few examples.

Example 7. (Sea data wave distributions) In order to be able to make comparisons with
the wave characteristic distributions in sea.dat we shall use the estimated spectrum SS, see
Example 1 on pages 18 and 24.

We first re-compute the spectrum estimate and the transformation to Gaussianness, and
extract some characteristics. The estimated spectrum is plotted in Figure 4.5, together with
pointwise 95% confidence intervals.

xx = load(’sea.dat’);

x = xx;

x(:,2) = detrend(x(:,2));

SS = dat2spec(x);

si = sqrt(spec2mom(SS,1));

SS.tr = dat2tr(x);

Hs = 4*si
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Figure 4.5: Estimated spectrum for data sea.dat with confidence bands.

Example 7a. Crest period: We first consider the crest period, as we did in Example 6a and
also the proportion of crests with significant crest height, i.e. Tc when Ac > Hs/2, in the
same way as we did for crest length in Example 6b. After that we will do the same for wave
period and consider Tu when Ac > Hs/2. The proportion of crests periods with significant
crest height should be the same as the proportion of wave periods with significant crest height,
i.e. Tu when Ac > Hs/2. The difference between the two proportions gives an indication of
the accuracy in the computation of the convolution Tu = Tc + Tt.
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We can also compare the calculated proportion of significant crests with the proportion
observed in data and with the approximative Rayleigh model. Finally, we estimate the den-
sity using KDE from data and compare to the theoretically computed one, based on the
transformed Gaussian model.

For completeness we again estimate the transformation and find wave characteristics in
the signal. The crest period, Tc, distribution, estimated from data, and the computed density
are almost identical, except for very short waves; see Figure 4.6(a), obtained by the following
commands. Note the last output variable yn, which is an interpolated series, to be used later.

method = 0; rate = 2;

[S,H,Ac,At,Tcf,Tcb,z_ind,yn] = dat2steep(x,rate,method);

Tc = Tcf+Tcb;

t = linspace(0.01,8,200);

f_tc1emp = kde(Tc,{’L2’,0},t);

pdfplot(f_tc1emp), hold on

f_tc1 = spec2tpdf(SS,[],’Tc’,[0 8 81],0,4);

simpson(f_tc1.x{1},f_tc1.f)

pdfplot(f_tc1,’-.’), hold off

We next consider computation of the density of crest period, but now for waves with
significant crest height, i.e. waves for which Ac > Hs/2. In the following call to spec2tpdf

the restriction to Ac > Hs/2 is indicated by the argument [Hs/2].

nit = 4;

f_tc2 = spec2tpdf(SS,[],’Tc’,[0 8 81],[Hs/2],nit);

Pemp = sum(Ac>Hs/2)/sum(Ac>0)

simpson(f_t2.x{1},f_t2.f)

index = find(Ac>Hs/2);

f_tc2emp = kde(Tc(index),{’L2’,0},t);

f_tc2emp.f = Pemp*f_tc2emp.f;

pdfplot(f_tc2emp), hold on

pdfplot(f_tc2,’-.’), hold off

The observed frequency of significant crests, Pemp, is 0.1778 which is remarkably close to
the theoretically computed value 0.1789, obtained with a computation time of 21 seconds.
(Observe that the Rayleigh approximation would give a probability equal to 0.1353. This is
not surprising since crests in non-Gaussian sea tend to be higher than those in Gaussian sea.)
Clearly, by changing the input Hs/2 to any other fixed level h, and integrating the resulting
density we obtain approximations to the probability P(Ac > h).

If h is a vector then it is more efficient to use the program spec2Acdf to compute
P(Ac > h), as in Example 6c. However, before using the program it is important to first use
spec2tpdf and check that the computed density integrates to one. If not, the inputs param
and nit have to be changed.

Observe that in this section we are analysing apparent waves in time. If the input ’Tc’ in
spec2tpdf is replaced by ’Lc’, then we would consider waves in space and the proportion
of significant crest would probably be very different.
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Figure 4.6: (a) Estimated density (KDE) of crest periods in sea.dat (solid line) compared with
theoretically computed using spec2tpdf (dashed line). (b) The same for the waves with
significant crest, i.e. Ac > Hs/2.

Example 7b. Wave period for high-crest waves: We turn now to the more difficult prob-
lem of wave period density for waves with significant crest height, Ac > Hs/2 and with At >

0. As mentioned, this differs from Example 7a in that it involves the distribution of the sum
Tc + Tt of two dependent random variables, with the same marginal distribution. Since the
computations need to be done with high accuracy (the computed density is different for the
unconditional wave period and for the period of waves with crest below a given threshold),
we need to use a high positive nit value, so that the total sum of the density is close to
0.1789, or use a negative nit. We begin with negative nit, which gives faster results very
close to the true density, and then take nit = 3.

f_tun = spec2tccpdf(SS,[],’t>’,[0 12 61],[Hs/2],[0],-1);

simpson(f_tun.x{1},f_tun.f)

f_tu3 = spec2tccpdf(SS,[],’t>’,[0 12 61],[Hs/2],[0],3,5);

simpson(f_tu3.x{1},f_tu3.f)

pdfplot(f_tun), hold on

pdfplot(f_tu3,’--’), hold off

The integral of the density f_tccn is 0.1778, which is close to the previously computed
value 0.1789. However, the execution time was 66 seconds, compared to 21 seconds for
f_t2. The choice nit=3 takes 3 minutes and give the integral 0.15. We have checked the
program with nit=5 (execution times 66 minutes), and the integrals was 0.17. The densities
are shown in Figure 4.7(a). We can see that the density computed using nit=-1 (dash-
dotted line) is quite accurate, even if it slightly wiggly, being a random function with very
small variance, and errors compensate each other giving almost perfect total probability mass.
Note that another call of the program would give slightly different values and the total mass
would also be changed.
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Figure 4.7: (a) Densities of upcrossing period Tu for waves with significant crest in the trans-
formed Gaussian model of the sea data in sea.dat computed with different degree of
accuracy; (solid line) nit=-1; the dashed line is computed with nit=5 and the dash dot-
ted line with nit=3. (b) Densities of period Tu for waves with significant crest and trough
in the same model; solid wiggled line nit=-1; solid smooth line nit=4; the dash dotted
line is estimated from the data with KDE.

Example 7c. Wave period for high-crest, deep-trough waves: We finish the example
with an even more interesting case, the density of wave period of waves with both significant
crest and significant trough, i.e. really big waves. We first estimate the probability of such
waves in the data; then we use the interpolated series yn from Example 7a.

[TC tc_ind v_ind] = dat2tc(yn,[],’dw’);

N = length(tc_ind);

t_ind = tc_ind(1:2:N);

c_ind = tc_ind(2:2:N);

Pemp = sum(yn(t_ind,2)<-Hs/2 & ...

yn(c_ind,2)>Hs/2)/length(t_ind)

ind = find(yn(t_ind,2)<-Hs/2 & yn(c_ind,2)>Hs/2);

spwaveplot(yn,ind(2:4))

Tu = yn(v_ind(1+2*ind),1)-yn(v_ind(1+2*(ind-1)),1);

t = linspace(0.01,14,200);

f_tu2_emp = kde(Tcc,{’L2’,0},t);

f_tu2_emp.f = Pemp*f_tu2_emp.f;

pdfplot(f_tu2_emp,’-.’)

The probability is estimated to be Pemp = 0.0370, which is slightly higher than what we
could expect if high crests and low troughs occur independently of each other (the probability
would then be less than 0.025).
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We turn now to computation of the probability using spec2tccpdf with nit=-1. How-
ever, we are here in a situation when the error in computations is of the order 10−3, which
is comparable to the values of the density itself. Hence the computed function will look very
noisy.

f_tu2_n = spec2tccpdf(SS,[],’t>’,[0 12 61],[Hs/2],[Hs/2],-1);

simpson(f_tu2_n.x{1},f_tu2_n.f), hold on

pdfplot(f_tu2_n), hold off

The execution time is less than 2 minutes, and the computed probability with nit = -1

is 0.0358, which is well in agreement with the estimated number. The more time-demanding
nit = 4 gives almost the same result, with an execution time of 50 minutes.

In Figure 4.7(b) we see the computed densities of wave period for these big waves. Those
are well concentrated around the mean value. It is also compared to the KDE estimator. We
have not tried to tune up the estimator that is based on only 20 values and hardly can be
considered as accurate. �

4.3 Joint density of crest period and crest height

In this section we shall present programs for joint characteristics of apparent waves. We shall
be mostly concerned with crest period, crest position, and crest height. Since we also want
to compare the theoretically derived densities with observations we wish to study a longer
record of measurements than we did in the previous section. By doing so we will have more
reliable statistical estimates of the densities, but on the other hand we face the problem that
the sea state can change during the measured period – the process is simply not stationary.

The data come from the Gullfaks C platform, see Figure 4.8(a). See the help text of
gfaksr89 for a detailed description of the data and northsea for the instructions how the
map showing location of the platform was drawn.
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Figure 4.8: Location of Gullfaks C platform (a). The estimated spectrum (b).
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WARNING: In the following examples we run the programs with maximum accuracy and
hence we have long execution times. Usually one should use simpler and faster approxi-
mations at first experiments with complicated distributions. When one is satisfied with the
results, one should compute the densities with the desired high accuracy. For testing own
problems we recommend to start execution of programs with input parameter speed = 9,8

(maximal speed is 9, the default is 4) and nit = -1, 1, (default is 2). These choices will
produce fast but still useful approximations.

4.3.1 Preliminary analysis of data

Example 8. (Some preliminary analysis of the data) We begin with loading the data, esti-
mating spectrum, finding the transformation g, and checking crest period density. Observe
that the data is sampled with 2.5 [Hz], what may cause some interpolation errors in the
estimated densities.

yy = load(’gfaksr89.dat’);

SS = dat2spec(yy);

si = sqrt(spec2mom(SS,1));

SS.tr = dat2tr(yy);

Hs = 4*si

v = gaus2dat([0 0],SS.tr); v = v(2)

The spectrum has two peaks, see Figure 4.8(b). We are not checking different options to
estimate the spectrum, but use the default parameters.

We shall now extract some simple wave characteristics, Tc,Tt,Tcf,Ac,At. All these
are column vectors containing crest period, trough period, position of crest, crest height and
trough height, respectively. All vectors are ordered by number of a wave, i.e. all vectors contain
characteristic of the i’th wave in their position i.

[TC tc_ind v_ind] = dat2tc(yy,v,’dw’);

N = length(tc_ind);

t_ind = tc_ind(1:2:N);

c_ind = tc_ind(2:2:N);

v_ind_d = v_ind(1:2:N+1);

v_ind_u = v_ind(2:2:N+1);

T_d = ecross(yy(:,1),yy(:,2),v_ind_d,v);

T_u = ecross(yy(:,1),yy(:,2),v_ind_u,v);

Tc = T_d(2:end)-T_u(1:end);

Tt = T_u(1:end)-T_d(1:end-1);

Tcf = yy(c_ind,1)-T_u;

Ac = yy(c_ind,2)-v;

At = v-yy(t_ind,2);

We then compute the crest period density and compare it with that observed in data.

t = linspace(0.01,15,200);

kopt3 = kdeoptset(’hs’,0.25,’L2’,0);

ftc1 = kde(Tc,kopt3,t);
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ftt1 = kde(Tt,kopt3,t);

pdfplot(ftt1,’k’), hold on

pdfplot(ftc1,’k-.’)

f_tc4 = spec2tpdf(SS,[],’Tc’,[0 12 81],0,4,5);

f_tcn = spec2tpdf(SS,[],’Tc’,[0 12 81],0,-1);

pdfplot(f_tcn,’b’), hold off

We do not present the graphical result for this computations but simply comment that
the agreement between theory and data is very good for both densities, except for observed
long waves, which have somewhat longer periods (about 0.25 s) than theoretically computed.
It is not much for a signal with 2.5 [Hz] sampling frequency. There is also the possibility that
the swell peak in the spectrum is too much smoothed. �

4.3.2 Joint distribution of crest period and height

We turn now to the joint density for the wave crest variables Tc,Tcf,Ac. We shall compute
the empirical densities from the observations and compute the theoretical ones from the
transformed Gaussian process with estimated spectrum and the transformation using the
WAFO function spec2thpdf. This function computes many joint characteristics of the half
wave, i.e. the part of the signal between the consecutive crossings of a still water level –
most of them are simply functions of the triple Tc,Tcf,Ac. (Execute the help function on
spec2thpdf for a complete list).

In a special case, when the so called crest velocity is of interest, Vcf=Ac/Tcf, the joint
density of Vcf,Ac is computed by the program spec2vhpdf, which is a simplified and
modified spec2thpdf program.

Example 9. (Joint characteristics of a half wave - position and height of a crest for a wave
with given period) We shall first consider crest period, i.e. consider only waves with crest
period Tc ≈ 4.5 seconds. Obviously the position of the crest of such waves is not constant,
but varies from wave to wave. The following commands estimates the density of crest position
and height for waves with Tc ≈ 4.5 seconds.

ind = find(4.4<Tc & Tc<4.6);

f_AcTcf = kde([Tcf(ind) Ac(ind)],{’L2’,[1 .5]});

plot(Tcf(ind), Ac(ind),’.’), hold on

pdfplot(f_AcTcf), hold off

Next, we compare the observed distribution with the theoretically computed joint density of
Tc, Tcf, Ac for a fixed value of Tc. By this we mean that if we integrate the result we shall
obtain the value of the density. Note that the distribution of Tc can be computed using the
program spec2tpdf.

opt1 = rindoptset(’speed’,5,’method’,3);

opt2 = rindoptset(’speed’,5,’nit’,2,’method’,0);

f_tcfac1 = ...

spec2thpdf(SS,[],’TcfAc’,[4.5 4.5 46],[0:0.25:8],opt1);
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f_tcfac2 = ...

spec2thpdf(SS,[],’TcfAc’,[4.5 4.5 46],[0:0.25:8],opt2);

pdfplot(f_tcfac1,’-.’), hold on

pdfplot(f_tcfac2)

plot(Tcf(ind), Ac(ind),’.’), hold off

simpson(f_tcfac1.x{1},simpson(f_tcfac1.x{2},f_tcfac1.f,1))

simpson(f_tcfac2.x{1},simpson(f_tcfac2.x{2},f_tcfac2.f,1))

f_tcf6=spec2tpdf(SS,[],’Tc’,[4.5 4.5 46],[0:0.25:8],6);

f_tc6.f(46)

We conclude that the densities f_tcfac1 and f_tcfac2 really integrate to the marginal
density of Tc (f_tc4.f(46)), demonstrating the accuracy of the densities f_tcfac1 and
f_tcfac2.
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Figure 4.9: Distribution of crest position and crest height for waves with crest period Tc =

4.5[s]. (a) The estimated (KDE) density of crest position and height together with obser-
vations (dots). (b) The theoretically computed density with nit = -1, 2 and the data.

In Figure 4.9(a) the estimated (KDE) joint density is given and it should be compared
with Figure 4.9(b), where the theoretical density is presented. Here we can really see the
advantage of the theoretically computed densities. Even if we have here used a long record of
wave data, there is not enough of waves to make a reliable estimate of the joint density, and
in a standard 20 minutes records there would be far too few observations. �
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As we have mentioned already the integral over the position of the computed densities is
equal to the joint density of crest period and height. So in order to get the whole density of
Tc, Ac one needs to execute the previous program to obtain the density of Tc, Tcf, Ac

for different values of Tc and integrate out the variable Tcf, and this will take some time.
However, the most time is spent on the computation of the density of long and small waves,
and these are not interesting. Hence we can start to compute the joint density of Tc,Ac for
significant waves.

Example 9. (contd.) We compute the joint density of Tc,Ac of significant waves in the
Gullfaks data in order to compare the distribution with the Longuet-Higgins approximation;
see Section 3.3.2. The following call takes substantial time (45 minutes), and gives the “exact”
distribution. It is not included in the “fast” version of the command file Chapter4.m.

f_tcac_s = spec2thpdf(SS,[],’TcAc’,[0 12 81],[Hs/2:0.1:2*Hs],opt1);

Next, we find the modified Longuet-Higgins (L-H)-density, i.e. the density with trans-
formed crest heights. The original (L-H)-density underestimes the high crests with up to one
meter. We can see that for significant waves and the present spectrum the modified Longuet-
Higgins density is quite accurate.

mom = spec2mom(SS,4,[],0);

t = f_tcac_s.x{1}; h = f_tcac_s.x{2};

flh_g = lh83pdf(t’,h’,[mom(1),mom(2),mom(3)],SS.tr);

ind = find(Ac>Hs/2);

plot(Tc(ind), Ac(ind),’.’); hold on

pdfplot(flh_g,’k-.’); pdfplot(f_tcac_s); hold off

In Figure 4.10(a) the theoretical density is plotted with solid lines and the transformed L-H
density with dash dotted lines. We can see that the simple approximation is working very
well, even if it gives slightly too short periods.

Finally, we compute the density for all wave heights.

f_tcac = spec2thpdf(SS,[],’TcAc’,[0 12 81],[0:0.2:8],opt1);

pdfplot(f_tcac)

In Figure 4.10(b) the theoretical density is compared with the data, and as we see, the
agreement is again quite good. This routine take about 25 minutes to run, and it is not
excecuted in the default version of the command file Chapter4.m. �

4.3.3 Joint density of crest and trough height

In previous sections we presented programs that compute joint densities of different wave
characteristics. We started with marginal densities of crest and trough periods Tc, Tt, and
then the joint density of Tc,Tt was derived in order to get the wave period Tu. Next, we
considered Tc,Tcr,Ac, crest period, crest position, and crest height. (The same is possible
for Tt,Ttb,At.) However, in order to fully describe a wave we should compute the joint
density of Tc,Tac,Ac,Tt,Tat,At. It is possible to write a program that computes such
six dimensional densities and it would not take more then 10 minutes of computer time to
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Figure 4.10: Joint density of Tc and Ac for the transformed Gaussian model of the sea mea-
surements from Gullfaks C platform (solid line) compared with the transformed Longuet-
Higgins density (dash dotted line) and the data (dots) for waves with significant crest.

compute the density for 200, say, different combinations of the characteristics. But in order
to describe a six dimensional density one needs may be 100 000 combinations of values and
this is not practically possible yet. Observe that, by numerical derivation, one can compute
the joint density of Tc,Ac,Tt,At using spec2tccpdf (or spec2AcAt) but it would take
many hours to do such computations.

There are however some alternatives. From previous studies we know that very high crests
(troughs) occur at the local maximum (minimum) closest to a zero crossing. We also know
that it is the derivative at the crossing that mainly determines the height of the wave crest.
Consequently, the steepness of a wave is mainly determined by the height and location of the
last minimum before and the first maximum after an upcrossing of the still water level. This
particular type of min-to-max wave is called a mean separated minimum-to-maximum wave.
In general, we can introduce a v-level separated min-to-max wave to be the last minimum
before and the first maximum after a level v upcrossing. The distance between the mean-
level separated minima and maxima, denoted TmM can be used to compute steepness of a
wave, see [10, 11] for details. The function spec2mmtpdf computes the joint density of
v-separated wave length and other characteristics of the v-separated minima and maxima.
It also computes the joint density of all pairs of local minima, maxima and the distance in
between; see [34] for examples.

4.3.4 Min-to-max distributions – Markov method

We shall now investigate another wave characteristic, namely the min-to-max wave distri-
bution, including the min-to-max period and amplitude. This requires the joint density of
the height of a local minimum (maximum) and the following maximum (minimum). The
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WAFO routine that handles this is called spec2mmtpdf, and calculates, i.a. the joint density
of the height of a maximum and the following minimum; see the help text to spec2mmtpdf.

One important application of the min-to-max distribution is for approximation of the
joint density of Ac,At, the crest and trough amplitudes, by approximating the sequence
of local extremes in a transformed Gaussian model by a Markov chain; see [57] for detailed
description of the algorithm. The approximation has been checked on many different sea data
giving very accurate results, and it is also relatively fast. There is another program spec2cmat

which is a function adapted from WAT. It is somewhat less accurate but even faster. It is used
to compute Markov matrices and rainflow matrices used in fatigue.
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Figure 4.11: The joint density of maximum and the following minimum for the transformed
Gaussian model of the sea measurements from Gullfaks C platform (dash dotted lines) com-
pared with the estimated (KDE) density from data (solid lines).

Example 10. (min-max problems with Gullfaks data) In this example we continue the
analysis of the Gullfaks C platform data. First we shall retrieve the sequence of turning points,
i.e. the minima and maxima, in yy and calculate the theoretical distribution.

opt2 = rindoptset(’speed’,5,’nit’,2,’method’,0);

tp = dat2tp(yy);

Mm = fliplr(tp2mm(tp));

fmm = kde(Mm);

f_mM = spec2mmtpdf(SS,[],’mm’,[],[-7 7 51],opt2);

pdfplot(f_mM,’-.’), hold on

pdfplot(fmm,’k-’), hold off

In Figure 4.11 we can see that the theoretically computed density agrees very well with
the estimated one, even with an as low a nit as 2. �
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Example 11. (crest-trough distribution from min-max transitions) We turn now to the
joint density of crest and trough. We first compute the exact distribution with the help of
spec2mmtpdf, and then compare the result with that obtained by means of the Markov
approximation for the min-max sequence; see Section 5.2.3. As mentioned, we do not use
the full min-to-max distribution but instead the ”still water separated” minima and maxima.

ind = find(Mm(:,1)>v & Mm(:,2)<v);

Mmv = abs(Mm(ind,:)-v);

fmmv = kde(Mmv,’epan’);

f_vmm = spec2mmtpdf(SS,[],’vmm’,[],[-7 7 51],opt2);

pdfplot(fmmv,’k-’), hold on

pdfplot(f_vmm,’-.’), hold off

Then we compute the joint density of crest and trough using the Markov approximation to
the sequence of local extremes (sequence of turning points tp).

facat = kde([Ac At]);

f_acat = spec2mmtpdf(SS,[],’AcAt’,[],[-7 7 51],opt2);

pdfplot(f_acat,’-.’), hold on

pdfplot(facat,’k-’), hold off
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Figure 4.12: Estimated joint density (KDE) of ”still water separated” min-to-max values for the
measurements from Gullfaks C (solid line) compared with: (a) the transformed Gaussian
model for the measurements (dash-dotted line). (b) Markov approximation for the joint
density of crest and trough height Ac,At (dashdotted line).

Now we are in the position to check our two methods, the Markov method, where the
min-to-max sequence is approximated by a Markov chain, and the replacement of the true
min-to-max transition probabilities by the transition probabilities that are valid for the ”still
water separated” min-to-max values. The results are presented in Figure 4.12. We see in (a)
that the ”still water separated” min-to-max distribution miss a considerable number of min-
to-max values, which fall on the same side of the still water level. On the other hand, figure
(b) indicates that the Markov assumption is acceptable. �
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4.4 WAFO wave characteristics routines

help trgauss

Module TRGAUSS in WAFO Toolbox.

Version 2.5.2 07-Feb-2011

Readme - New features, bug fixes, and changes in TRGAUSS.

Misc

createpdf - PDF struct constructor.

pdfplot - Plot contents of pdf structures.

trplot - Plots transformation, g, eg. estimated with dat2tr.

Transforms and non-linearities

dat2gaus - Transforms x using the transformation g.

gaus2dat - Transforms xx using the inverse of g.

testgaussian - Test if a stochastic process is Gaussian.

spec2skew - Estimates the moments of 2’nd order non-linear waves.

trangood - Makes a transformation that is suitable for

efficient transforms.

tranproc - Transforms process X and up to four derivatives.

trmak - Put together a transformation object.

troptset - Create or alter TRANSFORM OPTIONS structure.

trunmak - Split a transformation object into its pieces.

Transformed Gaussian model estimation

cdf2tr - Estimate transformation, g, from observed CDF.

dat2tr - Estimate transformation, g, from data.

hermitetr - Estimate transformation, g, from the first 4 moments.

ochitr - Estimate transformation, g, from the first 3 moments.

lc2tr - Estimate transformation, g, from observed

crossing intensity.

lc2tr2 - Estimate transformation, g, from observed

crossing intensity, version 2.

Gaussian probabilities and expectations

cdfnorm2d - Bivariate normal cumulative distribution function.

prbnorm2d - Bivariate normal probability.

prbnormnd - Multivariate normal probability by Genz’ algorithm.

prbnormndpc - Multivariate normal probabilities with

product correlation.

prbnormtnd - Multivariate normal or T probability by

Genz’ algorithm.

prbnormtndpc - Multivariate normal or T probability with

product correlation structure.
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rind - Computes multivariate normal expectations.

rindoptset - Create or alter RIND OPTIONS structure.

Probability density functions (pdf) or intensity matrices

chitwo2lc_sorm - SORM-approximation of crossing intensity,

noncentral Chi^2 process.

chitwo2lc_sp - Saddlepoint approximation of crossing

intensity, noncentral Chi^2 process.

dirsp2chitwo - Parameters in non-central CHI-TWO process for

directional Stokes waves.

iter - Calculates a Markov matrix given a rainflow matrix.

iter_mc - Calculates a kernel of a MC given a rainflow matrix.

mc2rfc - Calculates a rainflow matrix given a

Markov chain with kernel f_xy.

mctp2rfc - Rainflow matrix given a Markov matrix of a

Markov chain of turning points.

mctp2tc - Calculates frequencies for the upcrossing

troughs and crests.

nt2fr - Calculates the frequency matrix given the

counting distribution matrix.

spec2cmat - Joint intensity matrix for cycles (max,min)-,

rainflow- and (crest,trough).

spec2mmtpdf - Joint density of Maximum, minimum and period.

spec2tccpdf - Density of crest-to-crest

wave-period or -length.

spec2thpdf - Joint density of amplitude and

period/wave-length characteristics.

spec2tpdf - Density of crest/trough- period or length.

spec2tpdf2 - Density of crest/trough- period or length,

version 2.

specq2lc - Saddlepoint approximation of crossing

intensity for quadratic sea.

th2vhpdf - Transform joint T-H density to V-H density.

Cumulative distribution functions (cdf)

cdflomax - CDF for local maxima for a zero-mean

Gaussian process.

spec2AcAt - Survival function for crests and troughs,

R(h1,h2)=P(Ac>h1,At>h2).

spec2Acdf - CDF for crests P(Ac<=h) or troughs P(At<=h).



CHAPTER 5

Fatigue load analysis and rain-flow cycles

This chapter contains some elementary facts about random fatigue and how to compute expected fa-
tigue damage from a stochastic, stationary load process. The commands can be found in Chapter5.m,
taking about 7 seconds to run on a 2.93 GHz 64 bit PC.

5.1 Random fatigue

5.1.1 Random load models

This chapter presents some tools from WAFO for analysis of random loads in order to assess ran-
dom fatigue damage. A complete list of fatigue routines can be obtained from the help function on
fatigue.

We shall assume that the load is given by one of three possible forms:

1. As measurements of the stress or strain function with some given sampling frequency in Hz.
Such loads will be called measured loads and denoted by x(t), 0 ≤ t ≤ T , where t is time and
T is the duration of the measurements.

2. In the frequency domain (that is important in system analysis) as a power spectrum. This means
that the signal is represented by a Fourier series

x(t) ≈ m +
[T /2]∑
i=1

ai cos(�i t) + bi sin(�i t)

where �i = i · 2�/T are angular frequencies, m is the mean of the signal and ai, bi are Fourier
coefficients. The properties are summarized in a spectral density as in described in Section 2.2.

3. In the rainflow domain, i.e. the measured load is given in the form of a rainflow matrix.

We shall now review some simple means to characterize and analyze loads which are given in any
of the forms (1)–(3), and show how to derive characteristics, important for fatigue evaluation and
testing.

85
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We assume that the reader has some knowledge about the concept of cycle counting, in particular
rainflow cycles, and damage accumulation using Palmgren-Miners linear damage accumulation hy-
potheses. The basic definitions are given in the end of this introduction. Another important property
is the crossing spectrum �(u), introduced in Section 2.1, defined as the intensity of upcrossings of a
level u by x(t) as a function of u.

The process of damage accumulation depends only on the values and the order of the local ex-
tremes (maxima and minima), in the load. The sequence of local extremes is called the sequence of
turning points. The irregularity factor � measures how dense the local extremes are relatively to the
mean frequency f0. For a completely regular function there would be only one local maximum be-
tween upcrossings of the mean level, giving irregularity factor equal to one. In the other extreme case,
there are infinitely many local extremes giving irregularity factor zero. However, if the crossing inten-
sity �(u) is finite, most of those local extremes are irrelevant for the fatigue and should be disregarded
by means of some smoothing device.

A particularly useful filter is the so-called rainflow filter that removes all local extremes that build
rainflow cycles with amplitude smaller than a given threshold. We shall always assume that the signals
are rainflow filtered; see Section 5.2.1.

If more accurate predictions of fatigue life are needed, then more detailed models are required for
the sequence of turning points. Here the Markov chain theory has shown to be particularly useful.
There are two reasons for this:

• the Markov models constitute a broad class of processes that can accurately model many real
loads,

• for Markov models, the fatigue damage prediction using rainflow method is particularly simple,
[54] and [26].

In the simplest case, the necessary information is the intensity of pairs of local maxima and the fol-
lowing minima, summarized in the so-called Markov matrix or min-max matrix. The dependence
between other extremes is modeled using Markov chains, see [61] and [17].

5.1.2 Damage accumulation in irregular loads

In laboratory experiments, one often subjects a specimen of a material to a constant amplitude load,
e.g. L(t) = s sin(�t), where s and � are the constant amplitude and frequency, and one counts the
number of cycles (periods) until the specimen breaks. The number of load cycles N (s) until failure, as
well as the amplitudes s are recorded. For small amplitudes, s < s∞, the fatigue life is often very large,
and is set to infinity, N (s) ≈ ∞, i.e. no damage will be observed even during an extended experiment.
The amplitude s∞ is called the fatigue limit or the endurance limit. In practice, one often uses a simple
model for the S-N curve, also called the Wöhler curve, i.e. the relation between the amplitude s and
N (s),

N (s) =

{
K −1s−� , s > s∞,

∞, s ≤ s∞,
(5.1)

where K and � are material dependent parameters. Often K is considered as a random variable, usually
lognormally distributed, i.e. with K −1 = E�−1 where ln E ∈ N(0,�2

E ), and �, � are fixed constants.
For irregular loads, also called variable amplitude loads, one often combines the S-N curve with a

cycle counting method by means of the Palmgren-Miner linear damage accumulation theory, to predict
fatigue failure time. A cycle counting procedure is used to form equivalent load cycles, which are used
in the life prediction.
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m+
k

m−
k = mrfc

k

Mk

Figure 5.1: Definition of the rainflow cycle as given by [52].

If the k:th cycle has amplitude sk then it is assumed that it causes a damage equal to 1/N (sk). The
total damage at time t is then

D(t) =
∑
tk≤t

1
N (sk)

= K
∑
tk≤t

s�k = KD� (t), (5.2)

where the sum contains all cycles that have been completed up to time t. Then, the fatigue life time
T f , say, is shorter than t if the total damage at time t exceeds 1, i.e. if D(t) > 1. In other words, T f

is defined as the time when D(t) crosses level 1 for the first time.

A very simple predictor of T f is obtained by replacing K = E−1� in Eq. (5.2) by a constant, for
example the median value of K , which is equal to �, under the lognormal assumption. For high cycle
fatigue, the time to failure is long, more than 105/f0, and then for stationary (and ergodic and some
other mild assumptions) loads, the damage D� (t) can be approximated by its mean E(D� (t)) = d� · t.
Here d� is the damage intensity, i.e. how much damage is accumulated per unit time. This leads to a
very simple predictor of fatigue life time,

T̂ f =
1
�d�

. (5.3)

5.1.3 Rainflow cycles and hysteresis loops

The now commonly used cycle counting method is the rainflow counting, which was introduced 1968
by Matsuishi and Endo in [42]. It was designed to catch both slow and rapid variations of the load by
forming cycles by pairing high maxima with low minima even if they are separated by intermediate
extremes. Each local maximum is used as the maximum of a hysteresis loop with an amplitude that is
computed by the rainflow algorithm. A new definition of the rainflow cycle, equivalent to the original
definition, was given 1987 by Rychlik, [52]. The formal definition is also illustrated in Figure 5.1.

Definition 5.1 (Rainflow cycle) From each local maximum Mk one shall try to reach above the same
level, in the backward (left) and forward (right) directions, with an as small downward excursion as possible.
The minima, m−

k and m+
k , on each side are identified. The minimum that represents the smallest deviation

from the maximum Mk is defined as the corresponding rainflow minimum mRFC
k . The k:th rainflow cycle

is defined as (mRFC
k , Mk).
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If tk is the time of the k:th local maximum and the corresponding rainflow amplitude is sRFC
k =

Mk − mRFC
k , i.e. the amplitude of the attached hysteresis loop, then the total damage at time t is

D(t) =
∑
tk≤t

1

N (sRFC
k )

= K
∑
tk≤t

(sRFC
k )� = KD� (t), (5.4)

where the sum contains all rainflow cycles that have been completed up to time t.
To use Eq. (5.3) to predict the fatigue life we need the damage intensity d� , i.e. the damage

per time unit caused by the rainflow cycles. If there are on the average f0 maxima1 per time unit,
after rainflow filtering, and equally many rainflow cycles, and each rainflow cycle causes an expected
damage �E(1/NSRFC ) it is clear that the damage intensity is equal to

d� = f0 E
(

(SRFC)�
)

.

Thus, an important parameter for prediction of fatigue life is the distribution of the rainflow ampli-
tudes and in particular the expected value of the rainflow amplitudes raised to the material dependent
power parameter � . WAFO contains a number of routines for handling the rainflow cycles in observed
load data and in theoretical load models.

5.2 Load cycle characteristics

5.2.1 Rainflow filtered load data

In previous chapters we have presented models for sea wave data, treated as functions of time. The
models can be used in response analysis for marine structures to wave forces or to compute wave
characteristics for specified random wave models, e.g. those defined by their power spectrum.

Measured wave or load signals are often very noisy and need to be smoothed before further analy-
sis. A common practice is to use a bandpass filters to exclude high frequencies from the power spectrum
and to filter out slow trends. If the function is modeled by a transformed Gaussian process xx, as de-
scribed in Section 2.2.4, such a filtration is performed on the inverse transformed signal yy = g(xx).
Obviously, one should not oversmooth data since that will affect the height of extreme waves or cy-
cles. Consequently, if the signal is still too irregular even after smoothing, this is an indication that one
should use the trough-to-crest wave concept, defined as in Table 3.1, instead of the simpler min-to-
max cycles. Chapter 4 of this tutorial was aimed at showing how one can compute the crest-to-trough
wave characteristics from a Gaussian or transformed Gaussian model.

The trough-to-crest cycle concept is a nonlinear means to remove small irregularities from a load
series. Another nonlinear method to remove small cycles from data is the rainflow filtering, introduced
in [56], and included in the WAFO toolbox. For completeness, we describe the algorithm of the
rainflow filter.

In this tutorial we have used a simple definition of rainflow cycles that is convenient for functions
with finitely many local maxima and minima. However, rainflow filters and rainflow cycles can be
defined for very irregular functions, like a sample function of Brownian motion, where there are
infinitely many local extremes in any finite interval, regardless how small. This is accomplished by

1We have defined f0 as the mean level upcrossing frequency, i.e. the mean number of times per time unit
that the load upcrosses the mean level. Thus there are in fact at least f0 local maxima per time unit. Since the
rainflow filter reduces the number of cycles, we let f0 here be defined as the average number of rainflow cycles
per time unit.
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defining the rainflow minimum mRFC(t) for all time points t of a function x(t) in such a way that
the rainflow amplitude x(t) − mRFC(t) is zero if the point x(t) is not a strict local maximum of the
function; see [56] for more detailed discussion. Now, a rainflow filter with threshold h, extracts all
rainflow cycles (mRFC(t), x(t)) such that x(t) − mRFC(t) > h. Consequently, if h < 0 then the signal
is unchanged by the filter, if h = 0 we obtain a sequence of turning points, and, finally, if h > 0, all
small oscillations are removed, see Figure 5.7 for an example.

5.2.2 Oscillation count and the rainflow matrix

The rainflow count is a generalization of the crossing count. The crossing spectrum counts the num-
ber of times a signal upcrosses any level u. More important for fatigue damage is the oscillation count,
N OSC(u, v) that counts the number of times a signal upcrosses an interval [u, v]. The oscillation count
is thus a function of two variables, u and v, and is plotted as a bivariate count. The oscillation count
is a counting distribution for the rainflow cycles. Consequently, if the matrix Nosc with elements
N OSC(uj, ui) is known, for discrete set of levels, u1,≤ u2 ≤ . . . ≤ un, we can compute the frequency
(or rather histogram) matrix of the rainflow count by means of the WAFO-function nt2fr and ob-
tain the matrix Frfc = nt2fr(Nosc), in fatigue practice called the rainflow matrix. Knowing the
rainflow matrix of a signal one can compute the oscillation count by means of the function fr2nt.

The rainflow matrix will play an important role in the analysis of the rainflow filtered signals.
Let x(t) be a measured signal and denote by xh(t) the rainflow filtered version, filtered with threshold
h. Now, if we know a rainflow matrix Frfc, say, of x, then the rainflow matrix of xh is obtained by
setting some subdiagonals of Frfc to zero, since there are no cycles in xh with amplitudes smaller than
h. Obviously, the oscillation count of xh can then be derived from the oscillation count of x.

Note that extracting a sequence of troughs and crests (mTC
i , M TC

i ) from the signal is closely related
to rainflow filtering. Given a reference level uTC, the sequence (mTC

i , M TC
i ) can be obtained by first

removing all rainflow cycles (mRFC
j , Mj) such that Mj < uTC or mRFC

j > uTC and then finding the
min-to-max pairs in the filtered signal.

Clearly, the oscillation count is an important characteristic of irregularity of a sea level function,
and similarly, the expected oscillation count, also called an oscillation intensity matrix, is an important
characteristic of the random processes used as a model for the data. Consequently we face two prob-
lems: how to compute the oscillation intensity, for a specified model, and if knowing the oscillation
intensity, how can one find an explicit and easy way to handle random processes with this intensity.
Note that by solving these two problems one increases the applicability of rainflow filters considerably.
Since then, given a random process, one can find its oscillation intensity, and next one can compute
the oscillation intensity of the rainflow filtered random process, and finally, find a random process
model for the filtered signal.

5.2.3 Markov chain of turning points, Markov matrix

An upcrossing of an interval [u, v] occurs if the process, after an upcrossing of the level u, passes
the higher level v before it returns below u. Therefore, the oscillation intensity is closely related to a
special first passage problem, and it can be practically handled if some Markov structure of the process
is assumed. While Gaussian processes are an important class of models for linear filtering, Markov
processes are the appropriate models as far as rainflow filtering is concerned. In this section a class of
models, the so called Markov chain of turnings points will be introduced.

For any load sequence we shall denote by TP the sequence of turning points. The sequence TP
will be called a Markov chain of turning points if it forms a Markov chain, i.e. if the distribution
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Figure 5.2: Part of a discrete load process where the turning points are marked with •. The
scale to the left is the discrete levels. The transitions from minimum to maximum and the
transitions from maximum to minimum are collected in the min-max matrix, F and max-
min matrix, F̂, respectively. The rainflow cycles are collected in the rainflow matrix, FRFC.
The numbers in the squares are the number of observed cycles and the grey areas are by
definition always zero.

of a local extremum, given all previous extrema, depends only on the value and type (minimum or
maximum) of the most recent previous extremum. The elements in the histogram matrix of min-to-
max cycles and max-to-min cycles are equal to the observed number of transitions from a minimum
(maximum) to a maximum (minimum) of specified height. Consequently, the probabilistic structure
of the Markov chain of turning points is fully defined by the expected histogram matrix of min-to-
max and max-to-min cycles; sometimes called Markov matrices. Note that for a transformed Gaussian
process, a Markov matrix for min-to-max cycles was computed in Section 4.3.4 by means of the WAFO

function spec2mmtpdf. In WAFO there is also an older version of that program, called spec2cmat,
which we shall use in this chapter. The max-to-min matrix is obtained by symmetry.

Next, the function mctp2tc (= Markov Chain of Turning Points to Trough Crests), computes
the trough2crest intensity, using a Markov matrix to approximate the sequence of turning points by a
Markov chain. This approximation method is called the Markov method. Be aware that the Markov
matrix is not the transition matrix of the Markov chain of turning points, but the intensity of different
pairs of turning points.

Figure 5.2 shows the general principle of a Markov transition count between turning points of lo-
cal maxima and minima. The values have been discretized to levels labeled 1, ..., n, from smallest
to largest.

Finding the expected rainflow matrix is a difficult problem and explicit results are known only
for special classes of processes, e.g. if x is a stationary diffusion, a Markov chain or a function of a
vector valued Markov chain. Markov chains are very useful in wave analysis since they form a broad
class of processes and for several sea level data, as well as for transformed Gaussian processes, one can
observe a very good agreement between the observed or simulated rainflow matrix and that computed
by means of the Markov method. Furthermore, Markov chains can be simulated in a very efficient
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way. However, the most important property is that, given a rainflow matrix or oscillation count of a
Markov chain of turning points one can find its Markov matrix. This means that a Markov chain of
turning points can be defined by either a Markov matrix FmM or by its rainflow matrix Frfc, and these
are connected by the following nonlinear equation

Frfc = FmM + F(FmM), (5.5)

where F is a matrix valued function, defined in [56], where also an algorithm to compute the in-
verse (I + F)−1 is given. The WAFO functions for computing Frfc from FmM are mctp2rfm and
mctp2rfc, while the inverse, i.e. FmM as a function of Frfc, is computed by arfm2mctp. It might be
a good idea to check the modules cycles and trgauss in WAFO for different routines for handling
these matrices.

5.3 Cycle analysis with WAFO

In this section we shall demonstrate how WAFO can be used to extract rainflow cycles from a load
sequence, and how the corresponding fatigue life can be estimated. The Markov method is used for
simulation and approximation of real load sequences. We shall use three load examples, the deep
water sea load, a simulated transformed Gaussian model, and a load sequence generated from a special
Markov structure.

5.3.1 Crossing intensity

Basic to the analysis is the crossing intensity function �(u), i.e. the number of times per time unit that
the load up-crosses the level u, considered as a function of u. We illustrate the computations on the
deep water sea waves data.

xx_sea = load(’sea.dat’);

tp_sea = dat2tp(xx_sea);

lc_sea = tp2lc(tp_sea);

T_sea = xx_sea(end,1)-xx_sea(1,1);

lc_sea(:,2) = lc_sea(:,2)/T_sea;

subplot(221), plot(lc_sea(:,1),lc_sea(:,2))

title(’Crossing intensity, (u, \mu(u))’)

subplot(222), semilogx(lc_sea(:,2),lc_sea(:,1))

title(’Crossing intensity, (log \mu(u), u)’)

The routines dat2tp and tp2lc take a load sequence and extracts the turning points, and from this
calculates the number of up-crossings as a function of level. The plots produced, Figure 5.3, show the
crossing intensity plotted in two common modes, lin-lin of (u, �(u)) and log-lin of (log �(u), u).

We shall also have use for the mean frequency f0, i.e. the number of mean level upcrossings per
time unit, and the irregularity factor, �, which is the mean frequency divided by the mean number of
local maxima per time unit. Thus 1/� is the average number of local maxima that occur between the
mean level upcrossings.

To compute f0 we use the MATLAB function interp1, (make help interp1), to find the crossing
intensity of the mean level.



92 CHAPTER 5. FATIGUE LOAD ANALYSIS AND RAIN-FLOW CYCLES

−2 −1 0 1 2
0

0.05

0.1

0.15

0.2

0.25
Crossing intensity, (u, μ(u))

10
−4

10
−2

10
0

−2

−1

0

1

2
Crossing intensity, (log μ(u), u)

Figure 5.3: Level crossing intensity for sea data

m_sea = mean(xx_sea(:,2));

f0_sea = interp1(lc_sea(:,1),lc_sea(:,2),m_sea,’linear’)

extr_sea = length(tp_sea)/(2*T_sea);

alfa_sea = f0_sea/extr_sea

5.3.2 Extraction of rainflow cycles

We start by a study of rainflow cycles in the deep water sea data. Recall the definition of rainflow and
min-max cycle counts. The demo program democc illustrates these definitions. To use it to identify
the first few rainflow and min-max cycles, just use,

proc = xx_sea(1:500,:);

democc

Two windows will appear. In Demonstration Window 1, first mark the turning points by the
button TP. Then choose a local maximum (with the buttons marked +1,−1,+5,−5) and find the
corresponding cycle counts, using the buttons RFC, PT. The cycles are visualized in the other window.

We shall now examine cycle counts in the load xx sea. From the sequence of turning points tp
we find the rainflow and min-max cycles in the data set,

RFC_sea = tp2rfc(tp_sea);

mM_sea = tp2mm(tp_sea);

Since each cycle is a pair of a local maximum and a local minimum in the load, a cycle count
can be visualized as a set of pairs in the R

2-plane. This is done by the routine ccplot. Compare the
min-max and rainflow counts in the load in Figure 5.4 obtained by the following commands.

subplot(121), ccplot(mM_sea)

title(’min-max cycle count’)

subplot(122), ccplot(RFC_sea)

title(’Rainflow cycle count’)

Observe that RFC contains more cycles with high amplitudes, compared to mM. This becomes
more evident in an amplitude histogram as seen in Figure 5.5.

ampmM_sea = cc2amp(mM_sea);

ampRFC_sea = cc2amp(RFC_sea);

subplot(221), hist(ampmM_sea,25);
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Figure 5.4: min-max and rainflow cycle plots for sea data.
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Figure 5.5: min-max and rainflow cycle distributions for sea data.

title(’min-max amplitude distribution’)

subplot(222), hist(ampRFC_sea,25);

title(’Rainflow amplitude distribution’)

5.3.3 Simulation of rainflow cycles

Simulation of cycles in a Markov model

The most simple cycle model assumes that the sequence of turning points forms a Markov chain. Then
the model is completely defined by the min-max matrix, G. The matrix has dimension n × n, where n
is the number of discrete levels (e.g. 32 or 64). In this example the discrete levels u are chosen in the
range from −1 to 1. The matrix G will contain the probabilities of transitions between the different
levels in u; see the help function for mktestmat for the generation of G.

n = 41; param_m = [-1 1 n]; param_D = [1 n n];

u_markov = levels(param_m);

G_markov = mktestmat(param_m,[-0.2 0.2],0.15,1);

The model is easy to simulate and this is performed by the simulation routine mctpsim. This
routine simulates only the sequence of turning points and not the intermediate load values.

T_markov = 5000;

xxD_markov = mctpsim({G_markov []},T_markov);

xx_markov = [(1:T_markov)’ u_markov(xxD_markov)’];
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Here xxD_markov takes values 1, . . . , n, and by changing the scale, as in the third command
line, we get the load xx_markov, which takes values between −1 and 1. The first 50 samples of the
simulation is plotted in Figure 5.6 by

plot(xx_markov(1:50,1),xx_markov(1:50,2))
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Figure 5.6: Simulated Markov sequence of turning points.

We shall later use the matrix G_markov to calculate the theoretical rainflow matrix, but first we
construct a similar sequence of turning points from a transformed Gaussian model.

Rainflow cycles in a transformed Gaussian model

In this example we shall consider a sea-data-like series obtained as a transformed Gaussian model with
JONSWAP spectrum. Since that spectrum contains also rather high frequencies a JONSWAP load will
contain many cycles with small amplitude. These are often uninteresting and can be removed by a
rainflow filter as follows.

Let g be the Hermite transformation proposed by Winterstein, which we used in Chapter 2.
Suppose the spectrum spec is of the JONSWAP type. To get the transform we need as input the
approximative higher moments, skewness and kurtosis, which are automatically calculated from the
spectrum by the routine spec2skew. We define the spectrum structure, including the transformation,
and simulate the transformed Gaussian load xx_herm. The routine dat2dtp extracts the turning
points discretized to the levels specified by the parameter vector param.

Note that when calling the simulation routine spec2sdat with a spectrum structure including
a transformation, the input spectrum must be normalized to have standard deviation 1, i.e. one must
divide the spectral values by the variance sa^2.

me = mean(xx_sea(:,2));

sa = std(xx_sea(:,2));

Hm0_sea = 4*sa;

Tp_sea = 1/max(lc_sea(:,2));

spec = jonswap([],[Hm0_sea Tp_sea]);

[sk, ku] = spec2skew(spec);
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spec.tr = hermitetr([],[sa sk ku me]);

param_h = [-1.5 2 51];

spec_norm = spec;

spec_norm.S = spec_norm.S/sa^2;

xx_herm = spec2sdat(spec_norm,[2^15 1],0.1);

h = 0.2;

[dtp,u_herm,xx_herm_1] = dat2dtp(param_o,xx_herm,h);

plot(xx_herm(:,1),xx_herm(:,2),’k’,’LineWidth’,2);

hold on;

plot(xx_herm_1(:,1),xx_herm_1(:,2),’k--’,’Linewidth’,2);

axis([0 50 -4 6]), hold off;

title(’Rainflow filtered wave data’)

The rainflow filtered data xx_herm_1 contains the turning points of xx_herm with rainflow
cycles less than h=0.2 removed. In Figure 5.7 the dashed curve connects the remaining turning points
after filtration.

0 10 20 30 40 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Rainflow filtered wave data

Figure 5.7: Hermite transformed wave data and rainflow filtered turning points, h = 0.2.

Try different degree of filtering on the Ochi transformed sequence and see how it affects the min-
max cycle distribution. You can use the following sequence of commands, with different h -values; see
Figure 5.8 for the results. Note that the rainflow cycles have their original values in the left figure but
that they have been discretized to the discrete level defined by param_o in the right figure.

tp_herm=dat2tp(xx_herm);

RFC_herm=tp2rfc(tp_herm);

mM_herm=tp2mm(tp_herm);

h=1;

[dtp,u,tp_herm_1]=dat2dtp(param_o,xx_herm,h);

RFC_herm_1 = tp2rfc(tp_herm_1);

subplot(121), ccplot(RFC_herm)

title(’h=0’)

subplot(122), ccplot(RFC_herm_1)

title(’h=1’)



96 CHAPTER 5. FATIGUE LOAD ANALYSIS AND RAIN-FLOW CYCLES

−2 −1 0 1 2

−2

−1

0

1

2

min

m
ax

h=0

−2 −1 0 1 2
−2

−1

0

1

2

min

m
ax

h=0.2

Figure 5.8: Rainflow cycles and rainflow filtered rainflow cycles in the transformed Gaussian
process.

5.3.4 Calculating the Rainflow Matrix

We have now shown how to extract rainflow cycles from a load sequence and to perform rainflow
filtering in measured or simulated load sequences. Next we shall demonstrate how the expected (the-
oretical) rainflow matrix can be calculated in any random load or wave model, defined either as a
Markov chain of turning points, or as a stationary random process with some spectral density. We
do this by means of the Markov method based on the max-min transition matrix for the sequence of
turning points. This matrix can either be directly estimated from or assigned to a load sequence, or it
can be calculated from the correlation or spectrum structure of a transformed Gaussian model by the
mehods described in Section 4.3.4.

Calculation of rainflow matrix in the Markov model

The theoretical rainflow matrix Grfc for the Markov model is calculated in WAFO by the routine
mctp2rfm. Let G_markov be as in Section 5.3.3 and calculate the theoretical rainflow matrix by

Grfc_markov=mctp2rfm({G_markov []});

A cycle matrix, e.g. a min-max or rainflow matrix, can be plotted by cmatplot. Now we will
compare the min-max and the rainflow matrices.

subplot(121),cmatplot(u_markov,u_markov,G_markov),...

axis(’square’)

subplot(122),cmatplot(u_markov,u_markov,Grfc_markov),...

axis(’square’)

Both 2D- and 3D-plots can be drawn; see the help on cmatplot. It is also possible to plot many
matrices in one call.

cmatplot(u_markov,u_markov,{G_markov Grfc_markov},3)

A plot with method = 4 gives contour lines; see Figure 5.9. Note that for high maxima and low
minima, the rainflow matrix has a pointed shape while the min-max matrix has a more rounded shape.
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Figure 5.9: min-max-matrix and theoretical rainflow matrix for test Markov sequence.

cmatplot(u_markov,u_markov,{G_markov Grfc_markov},4)

subplot(121), axis(’square’),...

title(’min-to-max transition matrix’)

subplot(122), axis(’square’), title(’Rainflow matrix’)

We now compare the theoretical rainflow matrix with an observed rainflow matrix obtained in
the simulation. In this case we have simulated a discrete Markov chain of turning points with states
1,...,n and put them in the variable xxD_markov. It is turned into a rainflow matrix by the WAFO

routine dtp2rfm. The comparison in Figure 5.10 between the observed rainflow matrix and the
theoretical one is produced as follows.

n = length(u_markov);

Frfc_markov = dtp2rfm(xxD_markov,n);

cmatplot(u_markov,u_markov,...

{Frfc_markov Grfc_markov*T/2},3)

subplot(121), axis(’square’)

title(’Observed rainflow matrix’)

subplot(122), axis(’square’)

title(’Theoretical rainflow matrix’)

Note that in order to compare the observed matrix Frfc_markov with the theoretical matrix
Grfc_markov we have to multiply the latter by the number of cycles in the simulation which is equal
to T/2.

We end this section by an illustration of the rainflow smoothing operation. The observed rainflow
matrix is rather irregular, due to the statistical variation in the finite sample. To facilitate comparison
with the theoretical rainflow matrix we smooth it by the built in smoothing facility in the routine
cc2cmat. To see how it works for different degrees of smoothing we calculate the rainflow cycles by
tp2rfc.

tp_markov = dat2tp(xx_markov);

RFC_markov = tp2rfc(tp_markov);

h = 1;

Frfc_markov_smooth = cc2cmat(param_m,RFC_markov,[],1,h);

cmatplot(u_markov,u_markov,...

{Frfc_markov_smooth Grfc_markov*T/2},4)
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Figure 5.10: Observed and theoretical rainflow matrix for test Markov sequence.
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Figure 5.11: Smoothed observed and calculated rainflow matrix for test Markov sequence.

subplot(121), axis(’square’)

title(’Smoothed observed rainflow matrix’)

subplot(122), axis(’square’)

title(’Theoretical rainflow matrix’)

Here, the smoothing is done as a kernel smoother with a bandwidth parameter h = 1. The effect
of the smoothing is shown in Figure 5.11.

Rainflow matrix from spectrum

We are now ready to demonstrate how the rainflow matrix can be calculated in a load or wave model
defined by its correlation or spectrum structure. We chose the transformed Gaussian model with
the Hermite transform xx_herm which was studied in Section 5.3.3. This model was defined by its
JONSWAP spectrum and the standard Hermite transform for asymmetry.

We first need to find the structure of the turning points, which is defined by the min-to-max
density by the methods in Section 4.3.4. We start by computing an approximation, GmM3_herm,
of the min-max density by means of the cycle routine spec2cmat (as an alternative one can use
spec2mmtpdf). The type of cycle is specified by a cycle parameter, in this case ’Mm’.
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Figure 5.12: min-max matrix and theoretical rainflow matrix for Hermite-transformed Gaus-
sian waves.

GmM3_herm = spec2cmat(spec,[],’Mm’,[],[],2);

The result is seen in Figure 5.12.
Then, we approximate the distribution of the turning points by a Markov chain with transitions

between extrema calculated from GmM3_herm, and compute the rainflow matrix by Eq. (5.5).

Grfc_herm = mctp2drfm({GmM3_herm.f,[]});

In WAFO, the rainflow matrix can be calculated directly from the spectrum by the cycle distribu-
tion routine spec2cmat by specifying the cycle parameter to ’rfc’.

Grfc_direct_herm = spec2cmat(spec,[],’rfc’,[],[],2);

The output is a structure array which contains the rainflow matrix in the cell .f.
The min-max matrix GmM3_herm and the rainflow matrix Grfc_herm are shown together in

Figure 5.12, obtained using the following commands.

u_herm = levels(param_o);

cmatplot(u_herm,u_herm,{GmM3_herm.f Grfc_herm},4)

subplot(121), axis(’square’),...

title(’min-max matrix’)

subplot(122), axis(’square’),...

title(’Theoretical rainflow matrix’)

We can also compare the theoretical min-max matrix with the observed cycle count and the theo-
retical rainflow matrix with the observed one. In both comparisons we smooth the observed matrix to
get a more regular structure. We also illustrate the multi-plotting capacity of the routine cmatplot.

tp_herm = dat2tp(xx_herm);

RFC_herm = tp2rfc(tp_herm);

mM_herm = tp2mm(tp_herm);

h = 1;

FmM_herm_smooth = cc2cmat(param_o,mM_herm,[],1,h);

Frfc_herm_smooth = cc2cmat(param_o,RFC_herm,[],1,h);
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Figure 5.13: Observed smoothed and theoretical min-max matrix, and observed smoothed and
theoretical rainflow matrix for Hermite-transformed Gaussian waves.

T_herm=xx_herm(end,1)-xx_herm(1,1);

cmatplot(u_herm,u_herm,{FmM_herm_smooth ...

GmM3_herm.f*T_herm/2;...

Frfc_herm_smooth Grfc_herm*T_herm/2},4)

subplot(221), axis(’square’)

title(’Observed smoothed min-max matrix’)

subplot(222), axis(’square’)

title(’Theoretical min-max matrix’)

subplot(223), axis(’square’)

title(’Observed smoothed rainflow matrix’)

subplot(224), axis(’square’)

title(’Theoretical rainflow matrix’)

5.3.5 Simulation from crossings structure

In fatigue experiments it is important to generate load sequences with a prescribed rainflow or other
crossing property. Besides the previously used simulation routines for Markov loads and spectrum
loads, WAFO contains algorithms for generation of random load sequences that have a specified aver-
age rainflow distribution or a specified irregularity and crossing spectrum. We illustrate the crossing
structure simulation by means of the routine lc2sdat. Simulation from a rainflow distribution can
be achieved by first calculating the corresponding Markov matrix and then simulate by means of
mctpsim.

The routine lc2sdat simulates a load with specified irregularity factor and crossing spectrum. We
first estimate these quantities in the simulated Hermite transformed Gaussian load, and then simulate
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series with the same crossing spectrum but with varying irregularity factor. The sampling variability
increases with decreasing irregularity factor, as is seen in Figure 5.14. The figures were generated by
the following commands.

cross_herm = dat2lc(xx_herm);

alpha1 = 0.25;

alpha2 = 0.75;

xx_herm_sim1 = lc2sdat(500,alpha1,cross_herm);

cross_herm_sim1 = dat2lc(xx_herm_sim1);

subplot(211)

plot(cross_herm(:,1),cross_herm(:,2)/max(cross_herm(:,2)))

hold on

stairs(cross_herm_sim1(:,1),...

cross_herm_sim1(:,2)/max(cross_herm_sim1(:,2)))

hold off

title(’Crossing intensity, \alpha = 0.25’)

subplot(212)

plot(xx_herm_sim1(:,1),xx_herm_sim1(:,2))

title(’Simulated load, \alpha = 0.25’)

xx_herm_sim2 = lc2sdat(500,alpha2,cross_herm);

cross_herm_sim2 = dat2lc(xx_herm_sim2);

subplot(211)

plot(cross_herm(:,1),cross_herm(:,2)/max(cross_herm(:,2)))

hold on

stairs(cross_herm_sim2(:,1),...

cross_herm_sim2(:,2)/max(cross_herm_sim2(:,2)))

hold off

title(’Crossing intensity, \alpha = 0.75’)

subplot(212)

plot(xx_herm_sim2(:,1),xx_herm_sim2(:,2))

title(’Simulated load, \alpha = 0.75’)

5.4 Fatigue damage and fatigue life distribution

5.4.1 Introduction

We shall now give a more detailed account of how WAFO can be used to estimate and bound the
fatigue life distribution under random loading. The basic assumptions are the Wöhler curve Eq. (5.1)
and the Palmgren-Miner damage accumulation rule Eq. (5.2),

N (s) =

{
K −1s−� , s > s∞,

∞, s ≤ s∞,
(5.6)

D(t) =
∑
tk≤t

1
N (sk)

= K
∑
tk≤t

s�k = KD� (t). (5.7)
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Figure 5.14: Upper figures show target crossing spectrum (smooth curve) and obtained spectrum
(wiggled curve) for simulated process shown in lower figures. Irregularity factor: left � =

0.25, right � = 0.75.

Here N (s) is the expected fatigue life from constant amplitude test with amplitude s, and D(t) is the
total damage at time t caused by variable amplitude cycles sk, completed before time t. The damage
intensity d� = D(t)/t for large t is the amount of damage per time unit.

Most information is contained in the cycle amplitude distribution, in particular in the rainflow
cycles, in which case (5.7) becomes,

D(t) =
∑
tk≤t

1
Nsk

=
∑
tk≤t

K
(
SRFC

k

)�
, SRFC

k =
(
Mk − mRFC

k

)
/2.

The rainflow cycle count RFC can be directly used for prediction of expected fatigue life. The
expression Eq. (5.3) gives the expected time to fatigue failure in terms of the material constant � and
the expected damage d� per time unit. The parameters � and � can be estimated from an S-N curve.
In the examples here we will use � = 5.5 ·10−10, � = 3.2; see Section 5.4.4. For our sea load xx_sea,
the computations go directly from the rainflow cycles as follows:

beta=3.2; gam=5.5E-10; T_sea=xx_sea(end,1)-xx_sea(1,1);

d_beta=cc2dam(RFC_sea,beta)/T_sea;

time_fail=1/gam/d_beta/3600

giving the time to failure 5.9693e+006 when time to failure is counted in hours (= 3600 sec). Obvi-
ously, this load causes little damage to the material with the specified properties, since the failure time
is almost 700 years – of course, the sea wave data is not a fatigue load sequence, so the example is
meaningless from a fatigue point of view.

5.4.2 Level Crossings

We have in Section 5.3.5 seen how the crossing intensity contains information about the load sequence
and how it can be used for simulation. We shall now investigate the relation between the crossing
intensity, the rainflow cycles, and the expected fatigue life.

We use the Markov model from Section 5.3.3 for the sequence of turning points as an example.
First we go from the rainflow matrix to the crossing intensity.
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Figure 5.15: Crossing intensity as calculated from the Markov observed rainflow matrix (solid
curve) and from the observed rainflow matrix (dashed curve).

mu_markov = cmat2lc(param_m,Grfc_markov);

muObs_markov = cmat2lc(param_m,Frfc_markov/(T_markov/2));

plot(mu_markov(:,1),mu_markov(:,2),...

muObs_markov(:,1),muObs_markov(:,2),’--’)

title(’Theoretical and observed crossing intensity ’)

The plot in Figure 5.15 compares the theoretical upcrossing intensity mu_markov with the ob-
served upcrossing intensity muObs_markov, as calculated from the theoretical and observed rainflow
matrices.

5.4.3 Damage

The WAFO toolbox contains a number of routines to compute and bound the damage, as defined
by (5.7), inflicted by a load sequence. The most important routines are cc2dam and cmat2dam,
which give the total damage from a cycle count and from a cycle matrix, respectively. More detailed
information is given by cmat2dmat, which gives a damage matrix, separated for each cycle, from a
cycle matrix. An upper bound for total damage from level crossings is given by lc2dplus.

We first calculate the damage by the routines cc2dam for a cycle count (e.g. rainflow cycles) and
cmat2dam for a cycle matrix (e.g. rainflow matrix).

beta = 4;

Dam_markov = cmat2dam(param_m,Grfc_markov,beta)

DamObs1_markov = ...

cc2dam(u_markov(RFC_markov),beta)/(T_markov/2)

DamObs2_markov = ...

cmat2dam(param_m,Frfc_markov,beta)/(T_markov/2)

Here, Dam_markov is the theoretical damage per cycle in the assumed Markov chain of turning
points, while DamObs1 and DamObs2 give the observed damage per cycle, calculated from the cycle
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Figure 5.16: Distribution of damage from different RFC cycles, from calculated theoretical and
from observed rainflow matrix.

count and from the rainflow matrix, respectively. For this model the result should be Dam_markov = 0.0073

for the theoretical damage and very close to this value for the simulated series.
The damage matrix is calculated by cmat2dmat. It shows how the damage is distributed among

the different cycles as illustrated in Figure 5.16. The sum of all the elements in the damage matrix
gives the total damage.

Dmat_markov = cmat2dmat(param_m,Grfc_markov,beta);

DmatObs_markov = cmat2dmat(param_m,...

Frfc_markov,beta)/(T_markov/2);}

subplot(121), cmatplot(u_markov,u_markov,Dmat_markov,4)

title(’Theoretical damage matrix’)

subplot(122), cmatplot(u_markov,u_markov,DmatObs_markov,4)

title(’Observed damage matrix’)

sum(sum(Dmat_markov))

sum(sum(DmatObs_markov))

It is possible to calculate an upper bound on the damage intensity from the crossing intensity
only, without using the rainflow cycles. This is done by the routine lc2dplus, which works on any
theoretical or observed crossing intensity function.

Damplus_markov = lc2dplus(mu_markov,beta)

5.4.4 Estimation of S-N curve

WAFO contains routines for computation of parameters in the basic S-N curve (5.1), for the relation
between the load cycle amplitude s and the fatigue life N (s) in fixed amplitude tests, defined by (5.6).
The variation of the material dependent variable K is often taken to be random with a lognormal
distribution,

K = E�−1,

where � is a fixed parameter, depending on material, and ln E has a normal distribution with mean 0
and standard deviation �E . Thus, there are three parameters, �, � , �E , to be estimated from an S-N
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Figure 5.17: Check of S-N-model on normal probability paper.

experiment. Taking logarithms in (5.1) the problem turns into a standard regression problem,

ln N (s) = − ln E − ln �− � ln s,

in which the parameters can easily be estimated.

The WAFO toolbox contains a data set SN with fatigue lives from 40 experiments with s = 10, 15,
20, 25, and 30 MPa, stored in a variable N, in groups of five. The estimation routine is called snplot,
which performs both estimation and plotting; see help snplot.

First load SN-data and plot in log-log scale.

load SN

loglog(N,s,’o’), axis([0 14e5 10 30])

To further check the assumptions of the S-N-model we plot the results for each s-level separately
on normal probability paper. As seen from Figure 5.17 the assumptions seem acceptable since the data
fall on almost parallel straight lines.

wnormplot(reshape(log(N),8,5))

The estimation is performed and fitted lines plotted in Figure 5.18, with linear and log-log plot-
ting scales:

[e0,beta0,s20] = snplot(s,N,12);

title(’S-N-data with estimated N(s)’)

gives linear scale and

[e0,beta0,s20] = snplot(s,N,14);

title(’S-N-data with estimated N(s)’)

gives log-log scales.
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Figure 5.18: Estimation of S-N-model on linear and log-log scale.

5.4.5 From S-N-curve to fatigue life distribution

The Palmgren-Miner hypothesis states that fatigue failure occurs when the accumulated damage ex-
ceeds one, D(t) > 1. Thus, if the fatigue failure time is denoted by Tf , then

P(Tf ≤ t) = P(D(t) ≥ 1) = P(K ≤ �D� (t)).

Here K = E−1� takes care of the uncertainty in the material. In the previous section we used and
estimated a lognormal distribution for the variation of K around �, when we assumed that ln K =
ln �− ln E is normal with mean ln � and standard deviation �E .

The cycle sum D� (t) is the sum of a large number of damage terms, only dependent on the cycles.
For loads with short memory one can assume that D� (t) is approximately normal,

D� (t) ≈ N (d� t, �2
� t),

where

d� = lim
t→∞

D� (t)
t

and �2
� = lim

t→∞
V (D� (t))

t
.

Thus the fatigue life distribution can be computed by combining the lognormal distribution for
K with the normal distribution for D� (t). Denoting the standard normal density and distribution
functions by �(x) and 	(x), respectively, an approximate explicit expression for the failure probability
within time t is

P(T f ≤ t) ≈
∫ ∞

−∞
	

(
ln �+ ln d� t + ln(1 + ��

d�
√

t z)

�E

)
�(z) dz. (5.8)

We have already estimated the material dependent parameters � = e0, � = beta0, and �2
E

= s20, in the S-N data, so we need the damage intensity d� and its variability �� for the acting
load.

We first investigate the effect of uncertainty in the �-estimate.

beta = 3:0.1:8;

DRFC = cc2dam(RFC_sea,beta);

dRFC = DRFC/T_sea;

plot(beta,dRFC), axis([3 8 0 0.25])

title(’Damage intensity as function of \beta’)
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The plot in Figure 5.19 shows the increase in damage with increasing � .
Next, we shall see how the load variability affects the fatigue life. We use three different values for

�2
� , namely 0, 0.5, and 5. With beta0, e0, s20 estimated in Section 5.4.4, we compute and plot the

following three possible fatigue life distributions.

dam0 = cc2dam(RFC_sea,beta0)/T_sea;

[t0,F0] = ftf(e0,dam0,s20,0.5,1);

[t1,F1] = ftf(e0,dam0,s20,0,1);

[t2,F2] = ftf(e0,dam0,s20,5,1);

plot(t0,F0,t1,F1,t2,F2)

Here, the fourth parameter is the value of �2
� used in the computation; see help ftf.
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Figure 5.20: Fatigue life distribution with sea load.

The resulting fatigue life distribution function is shown in Figure 5.20. As seen, the curves are
identical, indicating that the correct value of �2

� is not important for such small �-values as are at hand
here. Hence, one can use �2

� = 0, and assume that the damage accumulation process is proportional
to time.
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5.4.6 Fatigue analysis of complex loads

Loads which cause fatigue are rarely of the homogeneous and stationary character as the loads used
in the previous sections. On the contrary, typical load characteristics often change their value during
the life time of a structure, for example, load spectra on an airplane part have very different fatigue
properties during the different stages of an air mission. Marin loads on a ship are quite different during
the loading and unloading phase, compared to a loaded ocean voyage, and the same holds for any road
vehicle.

The WAFO toolbox can be used to analyze also loads of complex structure and we shall illustrate
some of these capabilities in this section. To be eligible for WAFO-analysis, the loads have to have
a piecewise stationary character, for example the mean level or the standard deviation may take two
distinct levels and change abruptly, or the frequency content can alternate between two modes, one
irregular and one more regular. Such processes are called switching processes. A flexible family of switch-
ing loads are those where the change between the different stationary states is governed by a Markov
chain. WAFO contains a special package of routines for analysis of such switching Markov loads, based
on methods from [25, 26].

In the following example the load alternates between two different mean levels, corresponding to
one heavy-load state (1) and one light-load state (2). In Figure 5.21 the observed load is shown in the
upper part. The alternating curve in the lower part shows the switches between the two states.
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Figure 5.21: Simulated switching load with two states. Upper graph shows the load, and the
states are indicated in the lower graph.

As long as the load is in one of the states, the rainflow cycles are made up of alternations between
turning points belonging only to that part of the load. When the state changes there is introduced
extra rainflow cycles with larger amplitudes. These extra cycles can be seen in the total rainflow matrix,
shown in Figure 5.22. The two large groups of cycles around (min,max) = (0.5, 0.75) and (min,max)
= (0, 0) come from states (1) and (2), respectively. The contribution from the switching is seen in the
small assembly of cycles around (min,max) = (-0.5, 1).

More details on how to analyse and model switching loads can be found in [24].
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Figure 5.22: 3D-plot (left) and isolines (right) of calculated rainflow matrix for switching load
in Figure 5.21. The dots in the right figure are the observed rainflow cycles.
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CHAPTER 6

Extreme value analysis

Of particular interest in wave analysis is how to find extreme quantiles and extreme significant values
for a wave series. Often this implies going outside the range of observed data, i.e. to predict, from a
limited number of observations, how large the extreme values might be. Such analysis is commonly
known as Weibull analysis or Gumbel analysis, from the names of two familiar extreme value distri-
butions. Both these distributions are part of a general family of extreme value distributions, known
as the Generalized Extreme Value Distribution, (GEV). The Generalized Pareto Distribution (GPD) is
another distribution family, particularly adapted for Peaks Over Threshold (POT), analysis. WAFO

contains routines for fitting of such distributions, both for the Weibull and Gumbel distributions, and
for the two more general classes of distributions. For a general introduction to statistical extreme value
analysis, the reader is referred to [14].

This chapter illustrates how WAFO can be used for elementary extreme value analysis in the direct
GEV method and in the POT method. The example commands in Chapter6.m take less than 35
seconds to run on a 2.93 GHz 64 bit PC. We start with a simple application of the classical Weibull
and Gumbel analysis before we turn to the general techniques.

6.1 Weibull and Gumbel papers

The Weibull and Gumbel distributions, the latter sometimes also called “the” extreme value distribu-
tion, are two extreme value distributions with distribution functions, respectively,

Weibull: FW (x; a, c) = 1 − e−(x/a)c
, x > 0, (6.1)

Gumbel: FG(x; a, b) = exp
(
−e−(x−b)/a

)
, −∞ < x < ∞. (6.2)

The Weibull distribution is often used as distribution for random quantities which are the minimum
of a large number of independent (or weakly dependent) identically distributed random variables. In
practice it is used as a model for random strength of material, in which case it was originally motivated
by the principle of weakest link. Similarly, the Gumbel distribution is used as a model for values which
are maxima of a large number of independent variables.

Since one gets the minimum of variables x1, x2, . . . , xn by changing the sign of the maximum of
−x1,−x2, . . . ,−xn, one realises that distributions suitable for the analysis of maxima can also be used

111
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for analysis of minima. Both the Weibull and the Gumbel distribution are members of the class of
Generalized Extreme Value distributions (GEV), which we shall describe in Section 6.2.

6.1.1 Estimation and plotting

We begin here with an example of Weibull and Gumbel analysis, where we plot data and empirical
distribution and also estimate the parameters a, b, c in Eqs. (6.1) and (6.2). The file atlantic.dat
is included in WAFO, and it contains significant wave-height data recorded approximately 14 times
a month in the Atlantic Ocean in December to February during seven years and at two locations.
The data are stored in the vector Hs. We try to fit a Weibull distribution to this data set, by the
WAFO-routine plotweib, which performs both the estimation and the plotting.

Hs = load(’atlantic.dat’);

wei = plotweib(Hs)
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Figure 6.1: Significant wave-height data: (a) on Weibull paper, (b) on Gumbel paper, (c) loga-
rithm of data on Normal probability paper, and (d) return values calculated in the Gumbel
model with observed data.

This will result in a two element vector wei = [ahat chat] with estimated values of the pa-
rameters (a, c) in (6.1). The empirical distribution function of the input data is plotted automatically
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in a Weibull diagram with scales chosen to make the distribution function equal to a straight line.
The horizontal scale is logarithmic in the observations x, and the vertical scale is linear in the reduced
variable log(− log(1 − F (x))); see Figure 6.1(a). Obviously, a Weibull distribution is not very well
suited to describe the significant wave-height data.

To illustrate the use of the Gumbel distribution we plot and estimate the parameters (a, b) in the
Gumbel distribution (6.2) for the data in Hs. The command

gum = plotgumb(Hs)

results in a vector gum with estimated values [ahat bhat] and the plot in Figure 6.1(b). Here
the horizontal axis is linear in the observations x and the vertical axis carries the reduced variable
− log(− log(F (x))). The data shows a much better fit to the Gumbel than to a Weibull distribution.

A distribution that is often hard to distinguish from the Gumbel distribution is the Lognormal
distribution, and making a Normal probability plot of the logarithm of Hs in Figure 6.1(c) also shows
a good fit.

plotnorm(log(Hs),1,0);

The parameter estimation in plotgumb and plotweib is done by fitting a straight line to the
empirical distribution functions in the diagrams and using the relations

log{− log[1 − FW (x; a, c)]} = c log(x) − c log(a), (6.3)

and

− log{− log[FG (x; a, b)]} = x/a − b/a, (6.4)

to relate parameters to intercepts and slopes of the estimated lines. In the following section we shall
describe some more statistical techniques for parameter estimation in the Generalized Extreme Value
distribution.

6.1.2 Return value and return period

The results of an extreme value analysis is often expressed in terms of return values or return levels,
which are simply related to the quantiles of the distribution. A return value is always coupled to a return
period, expressed in terms of the length of an observation period, or the number of (independent)
observations of a random variable.

Suppose we are interested in the return levels for the largest significant wave height that is observed
during one year at a measuring site. Denote by Mk

Hs
the maximum during year number k and let its

distribution function be F (x). Then the N -year return level, sN , is defined by

F (sN ) = 1 − 1/N . (6.5)

For example, P(Hs > s100) = 1 − F (s100) = 1/100, which means that,

• the probability that the level s100 is exceeded during one particular year is 0.01,

• on the average, the yearly maximum significant wave height exceeds s100 one year in 100 years,
(note that there may several exceedances during that particular year),

• the probability that s100 is exceeded at least one time during a time span of 100 years is 1 −
(1 − 0.01)100 ≈ 1 − 1/e = 0.6321, provided years are independent.
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To make it simple, we consider the Gumbel distribution, and get, from (6.5), the T -year return
value for the yearly maximum in the Gumbel distribution (6.2):

sT = b − a log(− log(1 − 1/T )) ≈ b + a log T , (6.6)

where the last approximation is valid for large T -values.

As an example we show a return value plot for the Atlantic data, as if they represented a sequence
of yearly maxima. Figure 6.1(d) gives the return values as a function of the return period for the
Atlantic data. The WAFO-commands are:

T = 1:100000;

sT = gum(2) - gum(1)*log(-log(1-1./T));

semilogx(T,sT), hold on

N = 1:length(Hs); Nmax = max(N);

plot(Nmax./N,sort(Hs,’descend’),’.’)

title(’Return values in the Gumbel model’)

xlabel(’Return priod’)

ylabel(’Return value’), hold off

In the next section we shall see a more realistic example of return value analysis. The Atlantic data
did not represent yearly maxima and the example was included only as an alternative way to present
the result of a Gumbel analysis.

6.2 The GPD and GEV families

The Generalized Pareto Distribution (GPD) has the distribution function

GPD: F (x; k,�) =

⎧⎨⎩1 − (
1 − kx/�

)1/k
, if k 	= 0,

1 − exp{−x/�}, if k = 0,
(6.7)

for 0 < x < ∞, if k ≤ 0, and for 0 < x < �/k, if k > 0. The Generalized Extreme Value distribution
(GEV) has distribution function

GEV: F (x; k, �,�) =

{
exp

{−(1 − k(x − �)/�)1/k
}

, if k 	= 0,

exp {− exp{−(x − �)/�}} , if k = 0,
(6.8)

for k(x − �) < �, � > 0, k, � arbitrary. The case k = 0 is interpreted as the limit when k → 0 for
both distributions.

Note that the Gumbel distribution is a GEV distribution with k = 0 and that the Weibull
distribution is equal to a reversed GEV distribution with k = 1/c, � = a/c, and � = −a, i.e. if W
has a Weibull distribution with parameters (a, c) then −W has a GEV distribution with k = 1/c,
� = a/c, and � = −a.

The estimation of parameters in the GPD and GEV distributions is not a simple matter, and no
general method exists, which has uniformly good properties for all parameter combinations. WAFO

contains algorithms for plotting of distributions and estimation of parameters with four different
methods, suitable in different regions.
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Figure 6.2: Empirical distribution (solid), cdf and pdf, of significant wave-height in atlantic

data, with estimated (dashed) Generalized Extreme Value distribution, and two diagnostic
plots og goodness of fit.

6.2.1 Generalized Extreme Value distribution

For the Generalized Extreme Value (GEV) distribution the estimation methods used in the WAFO

toolbox are the Maximum Likelihood (ML) method and the method with Probability Weighted Mo-
ments (PWM), described in [50] and [23]. The programs have been adapted to MATLAB from a
package of S-Plus routines described in [7].

We start with the significant wave-height data for the Atlantic data, stored in Hs. The command

gev = fitgev(Hs,’plotflag’,2)

will give estimates gev.params = [khat sigmahat muhat] of the parameters (k,�, �) in the
GEV distribution (6.8). The output matrix field gev.covariancewill contain the estimated covari-
ance matrix of the estimates. The program also gives a plot of the empirical distribution together with
the best fitted distribution and two diagnostic plots that give indications of the goodness of fit; see
Figure 6.2.

The routine plotkde, which is a simplified version of the kernel density estimation routines in
kdetools, is used to compare the GEV density given estimated parameters with a non-parametric
estimate (note that plotkde can be slow for large data sets like Hs). The commands

clf

x = linspace(0,14,200);

plotkde(Hs,[x;pdfgev(x,gev)]’)

will give the upper right diagram Figure 6.2.
The default estimation algorithm for the GEV distribution is the method with Probability Weighted

Moments (PWM). An optional second argument, fitgev(Hs, method), allows a choice between



116 CHAPTER 6. EXTREME VALUE ANALYSIS

the PWM-method (when method = ’pwm’) and the alternative ML-method (when method =

’ml’). The variances of the ML estimates are usually smaller than those of the PWM estimates.
However, it is recommended that one first uses the PWM method, since it works for a wider range of
parameter values.
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Figure 6.3: GEV analysis of 285 maxima over 5 minute intervals of sea level data Yura87.

Example 12. (Wave data from the Yura station) The WAFO toolbox contains a data set yura87 of
more than 23 hours of water level registrations at the Poseidon platform in the Japan Sea; see help
yura87. Sampling rate is 1 Hz and to smooth data we interpolate to 4 Hz, and then group the data
into a matrix with 5 minutes of data in each column, leaving out the last, unfinished period.

xn = load(’yura87.dat’);

XI = 0:0.25:length(xn);

N = length(XI); N = N-mod(N,4*60*5);

YI = interp1(xn(:,1),xn(:,2),XI(1:N),’spline’);

YI = reshape(YI,4*60*5,N/(4*60*5)); % Each column holds

% 5 minutes of interpolated data.

It turns out that the mean value and standard deviation change slowly during the measuring period,
and we therefore standardize each column to zero mean and unit variance, before we take the maxi-
mum over each 5 minute interval and perform the GEV analysis; compare the results with those in
the simpler analysis in Section 1.4.5.

Y5 = (YI-ones(1200,1)*mean(YI))./(ones(1200,1)*std(YI));

Y5M = max(Y5);

Y5gev = fitgev(Y5M,’plotflag’,2)

The estimated parameters in Y5gev.params are k = −0.314 with a 95% confidence interval
of (−0.12, 0.06), indicating that a Gumbel distribution might be an acceptable choice. Location and
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Figure 6.4: (a) Exceedances of significant wave-height data over level 3, (b) Significant wave-
heigh over level 7, in atlantic data

scale are estimated to � = 2.91 and � = 0.34. Figure 6.3 shows a good fit to the GEV model for the
series of 5 minute maxima in the (standardized) Yura series, except for the few largest values, which are
underestimated by the model. This is posssibly due to a few short periods with very large variability in
the data. �

6.2.2 Generalized Pareto distribution

For the Generalized Pareto distribution (GPD) the WAFO uses the method with Probability Weighted
Moments (PWM), described in [22], and the standard Method of Moments (MOM), as well as a
general method suggested by Pickands, in [47]. S-Plus routines for these methods are described in [7].

The GPD is often used for exceedances over high levels, and it is well suited as a model for
significant wave heights. To fit a GPD to the exceedances in the atlanticHs series over of thresholds
3 and 7, one uses the commands

gpd3 = fitgenpar(Hs(Hs>3)-3,’plotflag’,1);

figure

gpd7 = fitgenpar(Hs(Hs>7),’fixpar’,...

[nan,nan,7],’plotflag’,1);

This will give estimates gpd.params = [khat sigmahat] of the parameters (k,�) in the Gener-
alized Pareto distribution (6.7) based on exceedance data Hs(Hs>u)-u. The optional output matrix
gpd.covariance will contain the estimated covariance matrix of the estimates. The program also
gives a plot of the empirical distribution together with the best fitted distribution; see Figure 6.4. The
fit is better for exceedances over level 7 than over 3, but there are less data available, and the confidence
bounds are wider.

The choice of estimation method is rather dependent on the actual parameter values. The default
estimation algorithm in WAFO for estimation in the Generalized Pareto distribution is the Maximum
Product of Spacings (MPS) estimator since it works for all values of the shape parameter and have
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the same asymptotic properties as the Maximum Likelihood (ML) method (when it is valid). The
Pickands’ (PKD) and Least Squares (LS) estimator also work for any value of the shape parameter k in
Eq. (6.7). The ML method is only useful when k ≤ 1, the PWM when k > −0.5, the MOM when
k > −0.25. The variances of the ML estimates are usually smaller than those of the other estimators.
However, for small sample sizes it is recommended to use the PWM, MOM or MPS if they are valid.

It is possible to simulate independent GEV and GPD observations in WAFO. The command
series

Rgev = rndgev(0.3,1,2,1,100);

gp = fitgev(Rgev,’method’,’pwm’);

gm = fitgev(Rgev,’method’,’ml’,’start’,gp.params,...

’plotflag’,0);

x=sort(Rgev);

plotedf(Rgev,gp,{’-’,’r-’}); hold on

plot(x,cdfgev(x,gm),’--’); hold off

simulates 100 values from the GEV distribution with parameters (0.3, 1, 2), then estimates the pa-
rameters using two different methods and plots the estimated distribution functions together with the
empirical distribution. Similarly for the GPD distribution;

Rgpd = rndgenpar(0.4,1,0,1,100);

plotedf(Rgpd); hold on

gp = fitgenpar(Rgpd,’method’,’pkd’,’plotflag’,0);

x=sort(Rgpd);

plot(x,cdfgenpar(x,gp))

gw = fitgenpar(Rgpd,’method’,’pwm’,’plotflag’,0);

plot(x,cdfgenpar(x,gw),’g:’)

gml = fitgenpar(Rgpd,’method’,’ml’,’plotflag’,0);

plot(x,cdfgenpar(x,gml),’--’)

gmps = fitgenpar(Rgpd,’method’,’mps’,’plotflag’,0);

plot(x,cdfgenpar(x,gmps),’r-.’); hold off

with the four different methods of parameter estimation. The results are shown in Figure 6.5(a) and
(b).

6.2.3 Return value analysis

As in the Gumbel model, one can calculate the return levels in the GEV by inverting (6.5) with
the GEV distribution function (6.8). The return level corresponding to return period N satisfies
1 − F (sN ) = 1/N , so when F is a GEV distribution function with shape parameter k 	= 0,

sN = � +
�

k

(
1 − (− log(1 − 1/N ))k

)
≈ � +

�

k

(
1 − N−k

)
, (6.9)

where the last expression holds for N large, so one can use − log(1 − 1/N ) ≈ 1/N . As always
in practice, the parameters in the return level have to be replaced by their estimated values, which
introduces uncertainties in the computed level.

Example 12. (contd.) Applied to the Yura87 data and the estimated GEV-model, we perform the
return level extrapolation by the commands,
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Figure 6.5: Empirical (solid) distributions and estimated (dashed) distribution functions for
100 observations of GEV (a) and GPD (b) variables.

T = 1:100000;

k = Y5gev.params(1); mu=Y5gev.params(3);

sigma = Y5gev.params(2);

sT = mu + sigma/k*(1-(log(1-1./T))^k);

semilogx(T,sT), hold

N = 1:length(Y5M); Nmax=max(N);

plot(Nmax./N,sort(Y5M,’descend’),’.’)

title(’Return values in the GEV model’)

xlabel(’Return priod’)

ylabel(’Return value’)

grid on; hold off

The result is shown in Figure 6.6, which is consistent with the quantile plot in Figure 6.3. �
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Figure 6.6: Return level extrapolation in the Yura87 data depends on the good fit in the main
part of the distribution. A few deviating large observations are disturbing.
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6.3 POT-analysis

Peaks Over Threshold analysis (POT) is a systematic way to analyse the distribution of the exceedances
over high levels in order to estimate extreme quantiles outside the range of observed values. The
method is based on the observation that the extreme tail of a distribution often has a rather simple
and standardized form, regardless of the shape of the more central parts of the distribution. One then
fits such a simple distribution only to those observations that exceed some suitable level, with the hope
that this fitted distribution gives an accurate fit to the real distribution also in the more extreme parts.
The level should be chosen high enough for the tail to have approximately the standardized form,
but not so high that there remains too few observations above it. After fitting a tail distribution one
estimates the distribution of the (random) number of exceedances over the level, and then combines
the tail distribution of the individual exceedances with the distribution for the number of exceedances
to find the total tail distribution.

6.3.1 Expected exceedance

The simplest distribution to fit to the exceedances over a level u is the Generalized Pareto distribution,
GPD, with distribution function (6.7). Note that if a random variable X follows a Generalized Pareto
distribution F (x; k,�), then the exceedances over a level u is also GPD with distribution function
F (x; k,�− ku), with the same k-parameter but with different (if k 	= 0) scale parameter �− ku,

P(X > u + y | X > u) =

(
1 − k u+y

�

)1/k

(
1 − k u

�

)1/k
=

(
1 − k

y
�− ku

)1/k

.

Another important property of the Generalized Pareto Distribution is that if k > −1, then the
mean exceedance over a level u is a linear function of u:

E(X − u | X > u) =
�− ku
1 + k

.

Plotting the mean exceedance as a function of u can help on decide on a proper threshold value.
The resulting plot is called Mean residual life plot, also referred to as mean excess plots in statistical
literature. The following command illustrate this for the significant wave height atlantic data:

plotreslife(Hs,’umin’,2,’umax’,10,’Nu’,200);

The result is plotted in Figure 6.7, and it seems to exhibit an almost linear relationship for u ≥ 7.

6.3.2 Poisson + GPD = GEV

If one is successful in fitting a Generalized Pareto distribution to the tail of data, one would like to use
the GPD to predict how extreme values might occur over a certain period of time. One could e.g.l,
want to predict the most extreme wave height that will appear during a year. If the distribution of the
individual significant wave height exceedances is GPD one can easily find e.g., the distribution of the
largest value of a fixed number of exceedances. However, the number of exceedances is not fixed but
random, and then one has to combine the distribution of the random size of individual exceedances
with the random number of exceedances N , before one can say anything about the total maximum.
If the level u is high we can, due to the Poisson approximation of the Binomial distribution and
neglecting the dependence of nearby values, assume N to have an approximate Poisson distribution.
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Figure 6.7: Estimated expected exceedance over level u of atlantic data as function of u.

Now there is a nice relationship between the Generalized Pareto distribution and the Generalized
Extreme Value distribution in this respect: the maximum of a Poisson distributed number of independent
GPD variables has a GEV distribution. This follows by simple summation of probabilities: if N is a
Poisson distributed random variable with mean �, and MN = max(X1, X2, . . . , XN ) is the maximum
of N independent GPD variables then,

P(MN ≤ x) =
∞∑

n=0

P(N = n) · P(X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x)

=
∞∑

n=0

e−�
�n

n!
·
(

1 − (1 − k
x
�

)1/k
)n

= exp
{
−(1 − k(x − a)/b)1/k

}
,

which is the Generalized Extreme Value distribution with b = �/�k and a = �(1 − �−k)/k.
This means that we can estimate the distribution of the maximum significant wave height during

a winter (December – February) months from our data set Hs by fitting a GPD to the exceedances
over some level u, estimating � by the number of exceedances N divided by the number of months
(7 × 3 × 2 = 42) and use the above relation to fit a GEV distribution:

gpd7 = fitgenpar(Hs(Hs>7)-7,’method’,’pwm’,’plotflag’,0);

khat = gpd7.params(1);

sigmahat = gpd7.params(2);

muhat = length(Hs(Hs>7))/(7*3*2);

bhat = sigmahat/muhat^khat;

ahat = 7-(bhat-sigmahat)/khat;

x = linspace(5,15,200);

plot(x,cdfgev(x,khat,bhat,ahat))

We have here used the threshold u = 7 since the exceedances over this level seem to fit well to a GPD
distribution in Figures 6.4(b) and 6.7. A larger value will improve the Poisson approximation to the
number of exceedances but give us less data to estimate the parameters.

Since we have approximately 14 data points for 41 complete months, we can compute the monthly
maxima mm and fit a GEV distribution directly:

mm = zeros(1,41);
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Figure 6.8: Estimated distribution functions of monthly maxima with the POT method (solid),
fitting a GEV (dashed) and the empirical distribution.

for i=1:41 % Last month is not complete

mm(i) = max(Hs(((i-1)*14+1):i*14));

end

gev = fitgev(mm);

plotedf(mm), hold on

plot(x,cdfgev(x,gev),’--’), hold off

The results of the two methods agree very well in this case as can be seen in Figure 6.8, where the
estimated distributions are plotted together with the empirical distribution of mm.

6.3.3 Declustering

The POT method relies on two properties of peaks over the selected threshold: they should occur
randomly in time according to an approximate Poisson process, and the exceedances should have an
approximate GPD distribution and be approximately independent. In practice, one does not always
find a Poisson distribution for the number of exceedances. Since extreme values sometimes have a
tendency to cluster, some declustering algorithm could be applied to identify the largest value in each
of the clusters, and then use a Poisson distribution for the number of clusters. The selected peaks
should be sufficiently far apart for the exceedances to be independent. The WAFO toolbox contains
the routine decluster to perform the declustering.

To select the clusters and check the Poisson character one can use the dispersion index, which is
the ratio between the variance and the expectation of the number of peaks. For a Poisson distribution
this ratio is equal to one. An acceptable peak separation should give a dispersion index near one.

Example 13. (Declustering sea data) We will extract peaks over threshold in the sea.dat, which is
a recording of almost 40 minutes of sea level data, sampled at a rate of 4[Hz].

We first define some parameters, Nmin,Tmin,Tb, to control the declustering, and to identify the
peaks that exceed 90% of the median peak size and are separated by at least Tmin.

Nmin = 7; % minimum number of extremes

Tmin = 5; % minimum distance between extremes

Tb = 15; % block period
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Figure 6.9: Threshold selection in POT analysis. Dashed vertical line indicates threshold selected
by the dispersion index, solid line by the residual life analysis.

xx = load(’sea.dat’);

timeSpan = (xx(end,1)-xx(1,1))/60; % in minutes

dt = xx(2,1)-xx(1,1); % in seconds

tc = dat2tc(xx);

umin = median(tc(tc(:,2)>0,2));

Ie0 = findpot(tc, 0.9*umin, Tmin);

Ev = sort(tc(Ie0,2));

Ne = numel(Ev)

if Ne>Nmin && Ev(Ne-Nmin)>umin, umax = Ev(Ne-Nmin);

else umax = umin;

end

Next, we calculate the expected residual life and the dispersion index for thresholds between umin

and umax and select an interval which is compatible with the Poisson distribution for the number of
peaks.

Nu = floor((umax-umin)/0.025)+1;

u = linspace(umin,umax,Nu);

mrl = reslife(Ev, ’u’,u);

umin0 = umin;

for io = numel(mrl.data):-1:1,

CI = mrl.dataCI(io:end,:);

if ~(max(CI(:,1))<=mrl.data(io) & mrl.data(io)<=min(CI(:,2))),

umin0 = mrl.args(io); break;

end

end

[di, threshold, ok_u] = ...

disprsnidx(tc(Ie0,:), ’Tb’, Tb, ’alpha’,0.05, ’u’,u);

The plots from the following commands are shown in Figure 6.9. It seems as if threshold =

1.23[m] is a suitable threshold.
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Figure 6.10: Diagnostic GPD plot for sea data return levels.

figure(1); plot(di)

vline(threshold) % Threshold from dispersion index

vline(umin0,’g’) % Threshold from mean residual life plot

figure(2); plot(mrl)

vline(threshold) % Threshold from dispersion index

vline(umin0,’g’) % Threshold from mean residual life plot

A GPD fit for peaks above 1.23[m] with diagnostic plot is obtained by the commands

Ie = findpot(tc, threshold, Tmin);

lambda = numel(Ie)/timeSpan; % # Y>threshold per minute

varLambda = lambda*(1-(dt/60)*lambda)/timeSpan;

stdLambd = sqrt(varLambda)

Ev = tc(Ie,2);

phat = fitgenpar(Ev, ’fixpar’,[nan,nan,threshold], ’method’,’mps’);

figure(3); phat.plotfitsumry() % check fit to data

The diagnostic plots are found in Figure 6.10. The last step is to calculate the numerical value and
some confidence intervals for a return level, and we do so for a three hour period, 180 min.

Tr = 3*60 % Return period in minutes

[xr,xrlo,xrup] = invgenpar(1./(lambda*Tr),phat,...

’lowertail’,false,’alpha’, 0.05) % return level + 95%CI

[xr,xrlo5,xrup5] = invgenpar(1./(lambda*Tr),phat,...

’lowertail’,false,’alpha’, 0.5) % return level + 50%CI

The three hour return level is thus estimated to xr = 2.02[m] with a 95% confidence interval
(1.30, 10.08). The 50% confidence bounds are (1.58, 3.05); as expected, a high confidence
leads to a very high upper limit. �
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6.4 Summary of statistical procedures in WAFO

The extreme value analysis presented in this chapter is part of a comprehensive library of statistical rou-
tines for random number generation, probability distributions, and parameter and density estimation
and likelihood analysis, etc.

help statistics

Module STATISTICS in WAFO Toolbox.

Version 2.5.2 07-Feb-2011

What’s new

Readme - New features, bug fixes, and changes

in STATISTICS.

Parameter estimation

fitbeta - Parameter estimates for Beta data

fitchi2 - Parameter estimates for

Chi squared data

fitexp - Parameter estimates for

Exponential data

fitgam - Parameter estimates for Gamma data

fitgengam - Parameter estimates for

Generalized Gamma data

fitgenpar - Parameter estimates for

Generalized Pareto data

fitgenparml - Internal routine for fitgenpar

(ML estimates for GPD data)

fitgenparrange - Parameter estimates for GPD model

over a range of thresholds

fitgev - Parameter estimates for GEV data

fitgumb - Parameter estimates for Gumbel data

fitinvnorm - Parameter estimates for

Inverse Gaussian data

fitlognorm - Parameter estimates for Lognormal data

fitmarg2d - Parameter estimates for MARG2D data

fitmargcnd2d - Parameter estimates for DIST2D data

fitnorm - Parameter estimates for Normal data

fitray - Parameter estimates for Rayleigh data

fitraymod - Parameter estimates for

Truncated Rayleigh data

fitt - Parameter estimates for

Student’s T data

fitweib - Parameter estimates for Weibull data

fitweib2d - Parameter estimates for 2D Weibull data

fitweibmod - Parameter estimates for

truncated Weibull data
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likgenpar - Log likelihood function for GPD

likweib2d - 2D Weibull log-likelihood function

loglike - Negative Log-likelihood function.

logps - Moran’s negative log Product

Spacings statistic

mlest - Maximum Likelihood or Maximum Product

Spacing estimator

Probability density functions (pdf)

pdfbeta - Beta PDF

pdfbin - Binomial PDF

pdfcauchy - Cauchy’s PDF

pdfchi2 - Chi squared PDF

pdfdiscrete - Discrete PDF

pdfempirical - Empirical PDF

pdfexp - Exponential PDF

pdff - Snedecor’s F PDF

pdffrech - Frechet PDF

pdfgam - Gamma PDF

pdfgengam - Generalized Gamma PDF

pdfgengammod - Modified Generalized Gamma PDF (stable)

pdfgenpar - Generalized Pareto PDF

pdfgev - Generalized Extreme Value PDF

pdfgumb - Gumbel PDF.

pdfhyge - Hypergeometric probability mass function

pdfinvnorm - Inverse Gaussian PDF

pdflognorm - Lognormal PDF

pdfmarg2d - Joint 2D PDF due to Plackett given as

f{x1}*f{x2}*G(x1,x2;Psi).

pdfmargcnd2d - Joint 2D PDF computed as

f(x1|X2=x2)*f(x2)

pdfnorm - Normal PDF

pdfnorm2d - Bivariate Gaussian distribution

pdfnormnd - Multivariate Normal PDF

pdfray - Rayleigh PDF

pdfraymod - Truncated Rayleigh PDF

pdft - Student’s T PDF

pdfpois - Poisson probability mass function

pdfweib - Weibull PDF

pdfweib2d - 2D Weibull PDF

pdfweibmod - Truncated Weibull PDF

Cumulative distribution functions (cdf)

cdfcauchy - Cauchy CDF
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cdfdiscrete - Discrete CDF

cdfempirical - Empirical CDF

cdfmarg2d - Joint 2D CDF due to Plackett

cdfmargcnd2d - Joint 2D CDF computed as

int F(X1<v|X2=x2).*f(x2)dx2

cdfmargcnd2dfun - is an internal function to cdfmargcnd2d

and prbmargcnd2d.

cdfnormnd - Multivariate normal CDF

cdfweib2d - Joint 2D Weibull CDF

cdfbeta - Beta CDF

cdfbin - Binomial CDF

cdfchi2 - Chi squared CDF

cdfexp - Exponential CDF

cdff - Snedecor’s F CDF

cdffrech - Frechet CDF

cdfgam - Gamma CDF

cdfgengam - Generalized Gamma CDF

cdfgengammod - Modified Generalized Gamma CDF

cdfgenpar - Generalized Pareto CDF

cdfgev - Generalized Extreme Value CDF

cdfgumb - Gumbel CDF

cdfhyge - The hypergeometric CDF

cdfinvnorm - Inverse Gaussian CDF

cdflognorm - Lognormal CDF

cdfmargcnd2d - Joint 2D CDF computed as

int F(X1<v|X2=x2).*f(x2)dx2

cdfnorm - Normal CDF

cdfray - Rayleigh CDF

cdfraymod - Modified Rayleigh CDF

cdft - Student’s T CDF

cdfpois - Poisson CDF

cdfweib - Weibull CDF

cdfweibmod - Truncated Weibull CDF

edf - Empirical Distribution Function

edfcnd - Empirical Distribution Function

conditioned on X>=c

prbmargcnd2d - returns the probability for rectangular

regions

prbweib2d - returns the probability for rectangular

regions

margcnd2dsmfun - Smooths the MARGCND2D distribution

parameters

margcnd2dsmfun2 - Smooths the MARGCND2D distribution

parameters
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Inverse cumulative distribution functions

invbeta - Inverse of the Beta CDF

invbin - Inverse of the Binomial CDF

invcauchy - Inverse of the Cauchy CDF

invchi2 - Inverse of the Chi squared CDF

invcmarg2d - Inverse of the conditional CDF of

X2 given X1

invcweib2d - Inverse of the conditional 2D weibull

CDF of X2 given X1

invdiscrete - Disrete quantile

invempirical - Empirical quantile

invexp - Inverse of the Exponential CDF

invf - Inverse of the Snedecor’s F CDF

invfrech - Inverse of the Frechet CDF

invgam - Inverse of the Gamma CDF

invgengam - Inverse of the Generalized Gamma CDF

invgengammod - Inverse of the Generalized Gamma CDF

invgenpar - Inverse of the Generalized Pareto CDF

invgev - Inverse of the Generalized

Extreme Value CDF

invgumb - Inverse of the Gumbel CDF

invhyge - Inverse of the Hypergeometric CDF

invinvnorm - Inverse of the Inverse Ga(ussian CDF

invlognorm - Inverse of the Lognormal CDF

invnorm - Inverse of the Normal CDF

invray - Inverse of the Rayleigh CDF

invt - Inverse of the Student’s T CDF

invweib - Inverse of the Weibull CDF

invpois - Inverse of the Poisson CDF

invraymod - Inverse of the modified Rayleigh CDF

invweibmod - Inverse of the modified Weibull CDF

Random number generators

rndalpha - Random matrices from a symmetric

alpha-stable distribution

rndbeta - Random matrices from a Beta distribution

rndbin - Random numbers from the binomial

distribution

rndboot - Simulate a bootstrap resample from a

sample

rndcauchy - Random matrices a the Cauchy

distribution

rndchi2 - Random matrices from a Chi squared

distribution

rnddiscrete - Random sample
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rndempirical - Bootstrap sample

rndexp - Random matrices from an Exponential

distribution

rndf - Random matrices from the Snedecor’s F

distribution

rndfrech - Random matrices from a Frechet

distribution

rndgam - Random matrices from a Gamma distribution

rndgengam - Random matrices from a Generalized Gamma

distribution.

rndgengammod - Random matrices from a Generalized

Modified Gamma distribution.

rndgenpar - Random matrices from a Generalized Pareto

Distribution

rndgev - Random matrices from a Generalized

Extreme Value distribution

rndgumb - Random matrices from a Gumbel

distribution

rndhyge - Random numbers from the Hypergeometric

distribution

rndinvnorm - Random matrices from a Inverse Gaussian

distribution

rndlognorm - Random matrices from a Lognormal

distribution.

rndmarg2d - Random points from a MARG2D

distribution

rndmargcnd2d - Random points from a MARGCND2D

distribution

rndnorm - Random matrices from a Normal

distribution

rndnormnd - Random vectors from a multivariate

Normal distribution

rndpois - Random matrices from a Poisson

distribution

rndray - Random matrices from a Rayleigh

distribution

rndraymod - Random matrices from modified Rayleigh

distribution

rndt - Random matrices from a Student’s T

distribution

rndweib - Random matrices a the Weibull

distribution

rndweibmod - Random matrices from the modified Weibull

distribution

rndweib2d - Random numbers from the 2D Weibull

distribution
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Moments

mombeta - Mean and variance for the Beta

distribution

mombin - Mean and variance for the Binomial

distribution

momchi2 - Mean and variance for the Chi squared

distribution

momexp - Mean and variance for the Exponential

distribution

momf - Mean and variance for the Snedecor’s F

distribution

momfrech - Mean and variance for the Frechet

distribution

momgam - Mean and variance for the Gamma

distribution

momgengam - Mean and variance for the Generalized

Gamma distribution

momgenpar - Mean and variance for the Generalized

Pareto distribution

momgev - Mean and variance for the GEV

distribution

momgumb - Mean and variance for the Gumbel

distribution

momhyge - Mean and variance for the Hypergeometric

distribution

mominvnorm - Mean and variance for the Inverse

Gaussian distribution

momlognorm - Mean and variance for the Lognormal

distribution

mommarg2d - Mean and variance for the MARG2D

distribution

mommargcnd2d - Mean and variance for the MARGCND2D

distribution

momnorm - Mean and variance for the Normal

distribution

mompois - Mean and variance for the Poisson

distribution

momray - Mean and variance for the Rayleigh

distribution

momt - Mean and variance for the Student’s T

distribution

momweib - Mean and variance for the Weibull

distribution

momweib2d - Mean and variance for the 2D Weibull

distribution
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Profile log likelihood functions

lnkexp - Link for x,F and parameters of

Exponential distribution

lnkgenpar - Link for x,F and parameters of

Generalized Pareto distribution

lnkgev - Link for x,F and parameters of

Generalized Extreme value distribution

lnkgumb - Link for x,F and parameters of Gumbel

distribution

lnkgumbtrnc - Link for x,F and parameters of truncated

Gumbel distribution

lnkray - Link for x,F and parameters of Rayleigh

distribution

lnkweib - Link for x,F and parameters of Weibull

distribution

loglike - Negative Log-likelihood function

logps - Moran’s negative log Product Spacings

statistic

ciproflog - Confidence Interval using Profile Log-

likelihood or Product Spacing- function

proflog - Profile Log- likelihood or

Product Spacing-function

findciproflog - Find Confidence Interval from proflog

function

Extremes

decluster - Decluster peaks over threshold values

extremalidx - Extremal Index measuring the dependence

of data

findpot - Find indices to Peaks over threshold

values

fitgev - Parameter estimates for GEV data

fitgenpar - Parameter estimates for Generalized

Pareto data

prb2retper - Return period from Probability of

exceedance

retper2prb - Probability of exceedance from return

period

Threshold selection

fitgenparrange - Parameter estimates for GPD model vs

thresholds

disprsnidx - Dispersion Index vs threshold

reslife - Mean Residual Life, i.e., mean excesses

vs thresholds
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plotdisprsnidx - Plot Dispersion Index vs thresholds

plotreslife - Plot Mean Residual Life

(mean excess vs thresholds)

Regression models

logit - Logit function.

logitinv - Inverse logit function.

regglm - Generalized Linear Model regression

reglm - Fit multiple Linear Regression Model.

reglogit - Fit ordinal logistic regression model.

regnonlm - Non-Linear Model Regression

regsteplm - Stepwise predictor subset selection for

Linear Model regression

Factor analysis

princomp - Compute principal components of X

Descriptive Statistics

ranktrf - Rank transformation of data material.

spearman - Spearman’s rank correlation coefficient

mean - Computes sample mean (Matlab)

median - Computes sample median value (Matlab)

std - Computes standard deviation (Matlab)

var - Computes sample variance (Matlab)

var2corr - Variance matrix to correlation matrix

conversion

cov - Computes sample covariance matrix

(Matlab)

corrcoef - Computes sample correlation coefficients

(Matlab toolbox)

skew - Computes sample skewness

kurt - Computes sample kurtosis

lmoment - L-moment based on order statistics

percentile - Empirical quantile (percentile)

iqrange - Computes the Inter Quartile Range

range - Computes the range between the maximum

and minimum values

Statistical plotting

clickslct - Select points in a plot by clicking

with the mouse

histgrm - Plot histogram

plotbox - Plot box-and-whisker diagram

plotdensity - Plot density.

plotexp - Plot data on Exponential distribution

paper
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plotedf - Plot Empirical Distribution Function

plotedfcnd - Plot Empirical Distribution Function

CoNDitioned that X>=c

plotfitsumry - Plot diagnostic of fit to data

plotgumb - Plot data on Gumbel distribution paper

plotkde - Plot kernel density estimate of PDF

plotmarg2dcdf - Plot conditional CDF of X1 given X2=x2

plotmarg2dmom - Plot conditional mean and standard

deviation

plotmargcnd2dcdf - Plot conditional empirical CDF of X1

given X2=x2

plotmargcnd2dfit - Plot parameters of the conditional

distribution

plotmargcnd2dmom - Plot conditional mean and

standard deviation

plotnorm - Plot data on a Normal distribution paper

plotqq - Plot empirical quantile of X vs empirical

quantile of Y

plotray - Plot data on a Rayleigh distribution

paper

plotresprb - Plot Residual Probability

plotresq - Plot Residual Quantile

plotscatr - Pairwise scatter plots

plotweib - Plot data on a Weibull distribution paper

plotweib2dcdf - Plot conditional empirical CDF of X1

given X2=x2

plotweib2dmom - Plot conditional mean and standard

deviation

Hypothesis Tests

anovan - multi-way analysis of variance (ANOVA)

testgumb - Tests if shape parameter in a GEV is

equal to zero

testmean1boot - Bootstrap t-test for the mean equal to 0

testmean1n - Test for mean equals 0 using

one-sample T-test

testmean2n - Two-sample t-test for mean(x) equals

mean(y)

testmean1r - Wilcoxon signed rank test for

H0: mean(x) equals 0

testmean2r - Wilcoxon rank-sum test for

H0: mean(x) equals mean(y)

Confidence interval estimation

ciboot - Bootstrap confidence interval.

ciquant - Nonparametric confidence interval for quantile
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momci1b - Moment confidence intervals using

Bootstrap

Bootstrap & jacknife estimates

covboot - Bootstrap estimate of the variance of

a parameter estimate.

covjack - Jackknife estimate of the variance of

a parameter estimate.

stdboot - Bootstrap estimate of the

standard deviation of a parameter

stdjack - Jackknife estimate of the

standard deviation of a parameter

Design of Experiments

yates - Calculates main and interaction effects

using Yates’ algorithm.

ryates - Reverse Yates’ algorithm to give

estimated responses

fitmodel - Fits response by polynomial

alias - Alias structure of a fractional design

cdr - Complete Defining Relation

cl2cnr - Column Label to Column Number

cnr2cl - Column Number to Column Label

ffd - Two-level Fractional Factorial Design

getmodel - Return the model parameters

sudg - Some Useful Design Generators

plotresponse - Cubic plot of responses

nplot - Normal probability plot of effects

Misc

comnsize - Calculates common size of all non-scalar

arguments

dgammainc - Incomplete gamma function with derivatives

gammaincln - Logarithm of incomplete gamma function.

parsestatsinput - Parses inputs to pdfxx, prbxx, invxx and

rndxx functions

createfdata - Distribution parameter struct constructor

getdistname - Return the distribution name

stdize - Standardize columns to have mean 0 and

standard deviation 1

center - Recenter columns to have mean 0

Demo

demofitgenpar - Script to check the variance of estimated

parameters
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APPENDIX A

Kernel density estimation

Histograms are among the most popular ways to visually present data. They are particular examples
of density estimates and their appearance depends on both the choice of origin and the width of the
intervals (bins) used. In order for the histogram to give useful information about the true underlying
distribution, a sufficient amount of data is needed. This is even more important for histograms in two
dimensions or higher. Also the discontinuity of the histograms may cause problems, e.g., if derivatives
of the estimate are required.

An effective alternative to the histogram is the kernel density estimate (KDE), which may be
considered as a “smoothed histogram”, only depending on the bin-width and not depending on the
origin, see [63].

A.1 The univariate kernel density estimator

The univariate KDE is defined by

f̂X (x; hs) =
1

n hs

n∑
j=1

Kd

(
x − Xj

hs

)
, (A.1)

where n is the number of datapoints, X1, X2, . . . , Xn, is the data set, and hs is the smoothing param-
eter or window width. The kernel function Kd is usually a unimodal, symmetric probability density
function. This ensures that the KDE itself is also a density. However, kernels that are not densities are
also sometimes used [see 72], but these are not implemented in the WAFO toolbox.

To illustrate the method, consider the kernel estimator as a sum of “bumps” placed at the ob-
servations. The shape of the bumps are given by the kernel function while the width is given by the
smoothing parameter, hs. Fig. A.1 shows a KDE constructed using 7 observations from a standard
Gaussian distribution with a Gaussian kernel function. One should note that the 7 points used here,
is purely for clarity in illustrating how the kernel method works. Practical density estimation usually
involves much higher number of observations.

Fig. A.1 also demonstrates the effect of varying the smoothing parameter, hs. A too small value for
hs may introduce spurious bumps in the resulting KDE (top), while a too large value may obscure the
details of the underlying distribution (bottom). Thus the choice of value for the smoothing parameter,
hs, is very important. How to select one will be elaborated further in the next section.
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Figure A.1: Smoothing parameter, hs, impact on KDE: True density (dotted) compared to KDE
based on 7 observations (solid) and their individual kernels (dashed).
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The particular choice of kernel function, on the other hand, is not very important since subop-
timal kernels are not suboptimal by very much, [see 72, pp. 31]. However, the kernel that minimizes
the mean integrated square error is the Epanechnikov kernel, and is thus chosen as the default kernel
in the software, see Eq. (A.8). For a discussion of other kernel functions and their properties, see [72].

A.1.1 Smoothing parameter selection

The choice of smoothing parameter, hs, is very important, as exemplified in Fig.A.1. In many situations
it is satisfactory to select the smoothing parameter subjectively by eye, i.e., look at several density
estimates over a range of bandwidths and selecting the density that is the most “pleasing” in some
sense. However, there are also many circumstances where it is beneficial to use an automatic bandwidth
selection from the data. One reason is that it is very time consuming to select the bandwidth by eye.
Another reason, is that, in many cases, the user has no prior knowledge of the structure of the data,
and does not have any feeling for which bandwidth gives a good estimate. One simple, quick and
commonly used automatic bandwidth selector, is the bandwidth that minimizes the mean integrated
square error (MISE) asymptotically. As shown in [72, Section 2.5 and 3.2.1], the one dimensional
AMISE1-optimal normal scale rule assuming that the underlying density is Gaussian, is given by

hAMISE =
[

4
3 n

]1/5

�̂, (A.2)

where �̂ is some estimate of the standard deviation of the underlying distribution. Common choices
of �̂ are the sample standard deviation, �̂s, and the standardized interquartile range (denoted IQR):

�̂IQR = (sample IQR)/(	−1(3/4) − 	−1(1/4)) ≈ (sample IQR)/1.349, (A.3)

where 	−1 is the standard normal quantile function. The use of �̂IQR guards against outliers if the
distribution has heavy tails. A reasonable approach is to use the smaller of �̂s and �̂IQR in order to
lessen the chance of oversmoothing, [see 63, pp. 47].

Various other automatic methods for selecting hs are available and are discussed in [63] and in
more detail in [72].

A.1.2 Transformation kernel denstity estimator

Densities close to normality appear to be the easiest for the kernel estimator to estimate. The estima-
tion difficulty increases with skewness, kurtosis and multimodality [72, Chap. 2.9].

Thus, in the cases where the random sample X1, X2, . . . , Xn, has a density, f , which is difficult to
estimate, a transformation, t, might give a good KDE, i.e., applying a transformation to the data to
obtain a new sample Y1, Y2, . . . , Yn, with a density g that more easily can be estimated using the basic
KDE. One would then backtransform the estimate of g to obtain the estimate for f .

Suppose that Yi = t(Xi), where t is an increasing differentiable function defined on the support
of f . Then a standard result from statistical distribution theory is that

f (x) = g(t(x)) t ′(x), (A.4)

1AMISE = asymptotic mean integrated square error
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where t ′(x) is the derivative. Backtransformation of the KDE of g based on Y1, Y2, . . . , Yn, leads to
the explicit formula

f̂X (x; hs, t) =
1

n hs

n∑
j=1

Kd

(
t(x) − t(Xj)

hs

)
t ′(x) (A.5)

A simple illustrative example comes from the problem of estimating the Rayleigh density. This
density is very difficult to estimate by direct kernel methods. However, if we apply the transformation
Yi =

√
Xi to the data, then the normal plot of the transformed data, Yi, becomes approximately linear.

Fig. A.2 shows that the transformation KDE is a better estimate around 0 than the ordinary KDE.
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Figure A.2: True Rayleigh density (dotted) compared to transformation KDE (solid,left) and
ordinary KDE (solid, right) based on 1000 observations.

A.2 The multivariate kernel density estimator

The multivariate kernel density estimator is defined in its most general form by

f̂X(x; H) =
|H|−1/2

n

n∑
j=1

Kd

(
H−1/2(x − Xj)

)
, (A.6)

where H is a symmetric positive definite d × d matrix called the bandwidth matrix. A simplification
of Eq. (A.6) can be obtained by imposing the restriction H = diag(h2

1, h2
2, . . . , h2

d ). Then Eq. (A.6)
reduces to

f̂X(x; h) =
1

n
∏n

i=1 hi

n∑
j=1

Kd

(
x − Xj 1

h1
,

x − Xj 2

h2
, . . . ,

x − Xj d

hd

)
, (A.7)

and is, in combination with a transformation, a reasonable solution to visualize multivariate densities.
The multivariate Epanechnikov kernel also forms the basis for the optimal spherically symmetric

multivariate kernel and is given by

Kd (x) =
d + 2
2 vd

(
1 − xT x

)
1xT x≤1, (A.8)

where vd = 2 �d/2/(
 (d/2) d ) is the volume of the unit d -dimensional sphere.
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In this tutorial we use the KDE to find a good estimator of the central part of the joint densities
of wave parameters extracted from time series. Clearly, such data are dependent, so it is assumed that
the time series are ergodic and short range dependent to justify the use of KDE:s, [see 72, Chap.
6]. Usually, KDE gives poor estimates of the tail of the distribution, unless large amounts of data is
available. However, a KDE gives qualitatively good estimates in the regions of sufficient data, i.e., in
the main parts of the distribution. This is good for visualization, e.g. detecting modes, symmetries of
distributions.

The kernel density estimation software is based on KDETOOL, which is a MATLAB toolbox pro-
duced by Christian Beardah.2 However, over the past 10 years the toolbox is totally rewritten and
extended to include the transformation kernel estimator and generalized to cover any dimension for
the data. The computational speed has also been improved.

2See http://science.ntu.ac.uk/msor/ccb/densest.html

http://science.ntu.ac.uk/msor/ccb/densest.html
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APPENDIX B

Standardized wave spectra

Knowledge of which kind of spectral density is suitable to describe sea state data are well established
from experimental studies. Qualitative considerations of wave measurements indicate that the spectra
may be divided into 3 parts, (see Fig. B.1):

1. Sea states dominated by wind sea but significantly influenced by swell components.

2. More or less pure wind seas or, possibly, swell component located well inside the wind frequency
band.

3. Sea states more or less dominated by swell but significantly influenced by wind sea.
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Figure B.1: Qualitative indication of spectral variability.

One often uses some parametric form of the spectral density. The three most important parametric
spectral densities implemented in WAFO will be described in the following sections.
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B.1 JONSWAP spectrum

The JONSWAP (JOint North Sea WAve Project) spectrum of [20] is a result of a multinational project
to characterize standardized wave spectra for the Southeast part of the North Sea. The spectrum is
valid for not fully developed sea states. However, it is also used to represent fully developed sea states.
It is particularly well suited to characterize wind sea when 3.6

√
Hm0 < Tp < 5

√
Hm0. The JONSWAP

spectrum is given in the form:

S+(�) =
� g2

�M exp
(
− M

N

(�p

�

)N
)
�

exp

(
−(�/�p−1)2

2 �2

)
, (B.1)

where

� =

{
0.07 if � < �p,

0.09 if � ≥ �p,

M = 5, N = 4,

� ≈ 5.061
H2

m0

T 4
p

{
1 − 0.287 ln(�)

}
.

A standard value for the peakedness parameter, �, is 3.3. However, a more correct approach is to
relate � to Hm0 and Tp, and use

� = exp
{

3.484
(
1 − 0.1975 (0.036 − 0.0056 Tp/

√
Hm0) T 4

p /H2
m0

)}
. (B.2)

Here � is limited by 1 ≤ � ≤ 7. This parameterization is based on qualitative considerations of deep
water wave data from the North Sea; see [70] and [21].

The relation between the peak period and mean zero-upcrossing period may be approximated by

Tm02 ≈ Tp/
(
1.30301 − 0.01698� + 0.12102/�

)
(B.3)

The JONSWAP spectrum is identical with the two-parameter Pierson-Moskowitz, Bretschneider, ITTC
(International Towing Tank Conference) or ISSC (International Ship and Offshore Structures Congress)
wave spectrum, given Hm0 and Tp, when � = 1. (For more properties of this spectrum, see the WAFO

function jonswap.m.

B.2 Torsethaugen spectrum

Torsethaugen, [67, 68, 69], proposed to describe bimodal spectra by

S+(�) =
2∑

i=1

S+
J (�; Hm0,i,�p,i,�i, Ni, Mi, �i) (B.4)

where S+
J is the JONSWAP spectrum defined by Eq. (B.1). The parameters Hm0, i, �p, i, Ni, Mi, and �i

for i = 1, 2, are the significant wave height, angular peak frequency, spectral shape and normalization
parameters for the primary and secondary peak, respectively.

These parameters are fitted to 20 000 spectra divided into 146 different classes of Hm0 and Tp

obtained at the Statfjord field in the North Sea in the period from 1980 to 1989. The measured Hm0

and Tp values for the data range from 0.5 to 11 meters and from 3.5 to 19 seconds, respectively.



B.2. TORSETHAUGEN SPECTRUM 145

Given Hm0 and Tp these parameters are found by the following steps. The borderline between
wind dominated and swell dominated sea states is defined by the fully developed sea, for which

Tp = Tf = 6.6 H1/3
m0 , (B.5)

while for Tp < Tf , the local wind sea dominates the spectral peak, and if Tp > Tf , the swell peak is
dominating.

For each of the three types a non-dimensional period scale is introduced by

�l u =
Tf − Tp

Tf − Tlu
,

where

Tlu =

{
2
√

Hm0 if Tp ≤ Tf (Lower limit),

25 if Tp > Tf (Upper limit),

defines the lower or upper value for Tp. The significant wave height for each peak is given as

Hm0,1 = Rpp Hm0 Hm0,2 =
√

1 − R2
pp Hm0,

where

Rpp =
(
1 − A10

)
exp

(
− (�l u

A1

)2
)

+ A10,

A1 =

{
0.5 if Tp ≤ Tf ,

0.3 if Tp > Tf ,
A10 =

{
0.7 if Tp ≤ Tf ,

0.6 if Tp > Tf .

The primary and secondary peak periods are defined as

Tp, 1 = Tp,

Tp, 2 =

⎧⎪⎨⎪⎩
Tf + 2 if Tp ≤ Tf ,(

M2 (N2/M2)(N2−1)/M2/� ((N2−1)/M2)
1.28 (0.4)N2{1−exp(−Hm0, 2/3)}

)1/(N2−1)
if Tp > Tf ,

where the spectral shape parameters are given as

N1 = N2 = 0.5
√

Hm0 + 3.2,

Mi =

⎧⎨⎩4
(

1 − 0.7 exp
(−Hm0

3

))
if Tp > Tf and i = 2,

4 otherwise.

The peakedness parameters are defined as

�1 = 35
(

1 + 3.5 exp
(− Hm0

))
�T , �2 = 1,

where

�T =

⎧⎪⎨⎪⎩
(

2 �Hm0, 1

g T 2
p

)0.857
if Tp ≤ Tf ,(

1 + 6 �lu
)(2 �Hm0

g T 2
f

)0.857
if Tp > Tf .
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Finally the normalization parameters �i (i = 1, 2) are found by numerical integration so that∫ ∞

0
S+

J (�; Hm0,i,�p,i,�i, Ni, Mi, �i) d� = H2
m0, i/16.

Preliminary comparisons with spectra from other areas indicate that the empirical parameters in the
Torsethaugen spectrum can be dependent on geographical location. This spectrum is implemented as
a matlab function torsethaugen.m in the WAFO toolbox.

B.3 Ochi-Hubble spectrum

Ochi and Hubble [45], suggested to describe bimodal spectra by a superposition of two modified
Bretschneider (Pierson-Moskovitz) spectra:

S+(�) =
1
4

2∑
i=1

((
�i + 1/4

)
�4

p, i

)�i


 (�i)

H2
m0, i

�4 �i + 1
exp

(−(�i + 1/4
)
�4

p, i

�4

)
,

where Hm0, i, �p, i, and �i for i = 1, 2, are significant wave height, angular peak frequency, and spectral
shape parameter for the low and high frequency components, respectively.

The values of these parameters are determined from an analysis of data obtained in the North
Atlantic. The source of the data is the same as that for the development of the Pierson-Moskowitz
spectrum, but analysis is carried out on over 800 spectra including those in partially developed seas
and those having a bimodal shape. In contrast to the JONSWAP and Torsethaugen spectra, which are
parameterized as function of Hm0 and Tp, Ochi and Hubble, [45] gave, from a statistical analysis of
the data, a family of wave spectra consisting of 11 members generated for a desired sea severity (Hm0)
with the coefficient of 0.95.

The values of the six parameters as functions of Hm0 are given as:

Hm0,1 = Rp,1 Hm0,

Hm0,2 =
√

1 − R2
p,1 Hm0,

�p,i = ai exp
(− bi Hm0

)
,

�i = ci exp
(− di Hm0

)
,

where d1 = 0 and the remaining empirical constants ai, bi (i = 1, 2), and d2, are given in Table B.1.
(See also the function ochihubble.m in the WAFO toolbox.)

Member no. 1 given in Table B.1 defines the most probable spectrum, while member no. 2 to 11
define the 0.95 percent confidence spectra.

A significant advantage of using a family of spectra for design of marine systems is that one of the
family members yields the largest response such as motions or wave induced forces for a specified sea
severity, while anothers yield the smallest response with confidence coefficient of 0.95.

Rodrigues and Soares [51], used the Ochi-Hubble spectrum with 9 different parameterizations
representing 3 types of sea state categories: swell dominated (a), wind sea dominated (b) and mixed
wind sea and swell system with comparable energy (c). Each category is represented by 3 different
inter-modal distances between the swell and the wind sea spectral components. These three subgroups
are denoted by I, II and III, respectively. The exact values for the six parameters are given in Table B.2.
(See the function ohspec3.m in the WAFO toolbox.)
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Member no. Rp,1 a1 a2 b1 b2 c1 c2 d2

1 0.84 0.70 1.15 0.046 0.039 3.00 1.54 0.062
2 0.84 0.93 1.50 0.056 0.046 3.00 2.77 0.112
3 0.84 0.41 0.88 0.016 0.026 2.55 1.82 0.089
4 0.84 0.74 1.30 0.052 0.039 2.65 3.90 0.085
5 0.84 0.62 1.03 0.039 0.030 2.60 0.53 0.069
6 0.95 0.70 1.50 0.046 0.046 1.35 2.48 0.102
7 0.65 0.61 0.94 0.039 0.036 4.95 2.48 0.102
8 0.90 0.81 1.60 0.052 0.033 1.80 2.95 0.105
9 0.77 0.54 0.61 0.039 0.000 4.50 1.95 0.082
10 0.73 0.70 0.99 0.046 0.039 6.40 1.78 0.069
11 0.92 0.70 1.37 0.046 0.039 0.70 1.78 0.069

Table B.1: Empirical parameter values for the Ochi-Hubble spectral model.

Sea state
type

Sea state
group Hm0, 1 Hm0, 2 �p, 1 �p, 2 1 2

I 5.5 3.5 0.440 0.691 3.0 6.5
a II 6.5 2.0 0.440 0.942 3.5 4.0

III 5.5 3.5 0.283 0.974 3.0 6.0
I 2.0 6.5 0.440 0.691 3.0 6.5

b II 2.0 6.5 0.440 0.942 4.0 3.5
III 2.0 6.5 0.283 0.974 2.0 7.0
I 4.1 5.0 0.440 0.691 2.1 2.5

c II 4.1 5.0 0.440 0.942 2.1 2.5
III 4.1 5.0 0.283 0.974 2.1 2.5

Table B.2: Target spectra parameters for mixed sea states.
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