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Computer exercise 3 in Stationary stochastic processes

The purpose of this exercise is to study different techniques for spectral estimates and cross-
spectrum estimates.

1 Preparations

• Download and read Matlabhints .

• Find out if you have access to the MATLAB toolboxes filterdesign and ident.
If not, you have to skip some of the exercises.

• Study Chapter 6.5 and 8 in the textbook.

• Read through the entire computer exercise, paying extra attention to section 2.1.

• Answer the exercises in the question dictionary below (use additional sheets, if nee-
ded); you are expected to be able to explain your answers during the exercise.

• In exercise 7, you are expected to use MATLAB with less detailed instructions. There-
fore, you are expected to familiarize yourself with relevant functions before the exer-
cise. If you don’t feel at ease with MATLAB, it is wise to start working on this exercise
before the lab session.

1.1 Question dictionary

1. Briefly explain how you can improve the periodogram estimate using a windowing
technique. What are the advantages and disadvantages?

Your answer:'

&

$

%
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2. How should one interpret a cross spectrum?

Your answer:'

&

$

%
3. What is the connection between the spectral densities for input and output processes

in a linear filter?

Your answer:'

&

$

%
4. Define the quadratic coherence spectrum. What is the minimum and maximum value

of the function?

Your answer:'

&

$

%
5. The cross spectrum of the input process X(t) and the output process Y (t) from the

filter with frequency function H( f ) is

RX ,Y ( f ) = H( f )RX( f ).

For a white noise input, RX( f ) = 1 and RX ,Y ( f ) = H( f ) . What is the quadratic cohe-
rence spectrum κX ,Y ( f )?

Your answer:'

&

$

%
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6. Let an uncorrelated disturbance process Z(t) be added to the filtered process, i.e.,
Y (t) =

∫
h(t − u)X(u)du + Z(t) , where X(t) is white noise. What is RX ,Y ( f ) and

κX ,Y ( f ) in this case?

Your answer:'

&

$

%
2 ARMA processes in MATLAB

This section constitutes a brief introduction to spectral analysis and simulation of ARMA
processes in MATLAB. It is intended for study and experimentation before the lab session,
and as a reference during the exercise.

2.1 Spectral density and covariance function of ARMA models

Initiate the row vectors of the ARMA(4,2)-model

X(t)−0.9X(t−1)+0.8X(t−2)−X(t−3)+0.8X(t−4) = e(t)+0.4e(t−1)+0.5e(t−2)

by writing in MATLAB

>> A = [1 -0.9 0.8 -1 0.8];
>> C = [1 0.4 0.5];

By armagui

The simplest way to compute covariance function and spectral density for an ARMA-process
is to use the routine armagui, which we studied in Computer exercise 2. Open armagui
and introduce zeros and poles in the graphics window. Then export the result to data and
check the details in the command window. There you can change the A- and C-coefficients
to a new model end import to armagui.

By freqz in the Filter design toolbox

Another approach to compute spectral density for an ARMA-process is to use the commands

>> [H,w]=freqz(C,A);
>> R=abs(H).^2;

where freqz is a MATLAB function in the Filter design toolbox that calculates the fre-
quency function corresponding to the polynomials C and A in a number of equally spaced
frequency values (default 512) between 0 ≤ ω < π where ω = 2π f . The squared absolute
value gives us the spectral density S . Visualize using
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>> plot(w,R)

The command semilogy(w,R) gives a logarithmic scale in y-axis.

To calculate the covariance function the inverse Fourier transform of the spectral density is
computed. The frequency range must be the whole period, i.e., −0.5≤ f < 0.5 alternatively
0 ≤ f < 1 when the command ifft is used. The frequency function is computed for this
range using whole in the function freqz,

>> H=freqz(C,A,512,’whole’);
>> Rd=abs(H).^2;
>> r=ifft(Rd);
>> stem([0:127],r(1:128),’filled’)

where the 128 first values of the covariance function is plotted. Observe that the vector
element r(1) is equal to the covariance value at zero, i.e. rX(0) = r(1) , and more gene-
rally rX(k) = r(k+1) in MATLAB. If you instead are interested in the correlation function
ρ(τ) = r(τ)/r(0) you obtain it by writing

>> stem([0:127], r(1:128)/r(1),’filled’)

2.2 Simulation of ARMA-processes

To be able to simulate an ARMA-model one need a sequence of independent normally1

distributed {e(t)} random variables. Generate such a sequence with variance 1 by

>> m = 0;
>> sigma = 1;
>> e = normrnd(m, sigma, 1, n);

alternatively

>> e = randn(1,n);

Each call generate a row-matrix e with n normally random numbers, choose n≈ 400. The
simulation is done with

>> x = filter(C, A, e);

which result in the vector Y with the simulated time-series as the result, where A and C are
defined as earlier. If you want to plot the result you can write e.g.

>> plot(x)

1In general e(t) does not need to be normally distributed.
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3 To start the MATLAB exercise

• Download the necessary m-files from the folder ssproutines and the data from
sspdata and make them accessible from your MATLAB window.

• It is often convenient to gather MATLAB commands in a program script; the MATLAB

editor can be used for this purpose. This is started with the command edit in the
MATLAB window.

4 Investigation of different spectrum estimation techniques

We can use armagui to simulate different processes by first importing a model into armagui
and then exporting the generated realisation back to MATLAB. The realization can then be
analyzed in spekgui using the there available methods.

Simulate a 500 sample realization of an ARMA(4,2)-process.

>> modell.A=[1 -2.39 3.35 -2.34 0.96];
>> modell.C=[1 0 1];

by importing the model to armagui.

1. Initially, we examine the spectral density in linear scale. Generate and export a rea-
lisation of data to MATLAB and then import this variable into spekgui. Compare
the periodogram estimate in linear scale with the true spectral density in armagui.
Simulate a new realization in armagui, export back to MATLAB and then import it
into spekgui. Repeat this to see the variance of the periodogram estimate.

Q. Draw rough sketches of periodogram estimates for two different realizations. Do
the peak heights vary considerably?'

&

$

%
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2. Similarly, analyze some simulations using averaged periodogram method with 10 ave-
rages (parameter set to 10).

Q. Draw rough sketches of peridogoram estimates for two different realizations. How
many times lower variance should the averaged periodogram estimate have, accor-
ding to theory?'

&

$

%
3. Choose e.g., 2, 4, 10, 20, 30 as the parameter value for the averaged periodogram

method.

Q. How is the spectrum estimate affected? What do we lose by increasing the number
of averages?'

&

$

%
4. Study the spectral density and the spectral estimates using a log-scale.

Q. Draw a rough sketch of the log-scale view of spectral density. How is the zero
of the unit circle reflected in the spectral density? At what frequency does the zero
occur?'

&

$

%
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5. Instead use Welch’s method with a time-window and some different averages, e.g., 2,
4, 10.

Q. Is the spectral estimate improved? What is the drawback?'

&

$

%
Assume now that we do not know that the observations are independent. From the
compendium, we know that

V (m∗)≈ 1
n

n−1

∑
k=−n+1

r(k),

A natural estimate of V (m∗) can be found by simply replacing r(k) with r∗(k):

V ∗(m∗) =
1
n

n−1

∑
k=−n+1

r∗(k) =
1
n

(
r∗(0)+2

n−1

∑
k=1

r∗(k)

)

=
1
n2

(
n

∑
j=1

(x j− x̄)2 +2
n−1

∑
k=1

n−k

∑
j=1

(xk− x̄)(xk+ j− x̄)

)

=
1
n2

(
n

∑
j=1

(x j− x̄)

)2

= 0.

Note that this estimate of V (m∗) is equal to zero, independently of the actual data set!
This is clearly an unreasonable estimate. How do we solve this problem? As

∞

∑
k=−∞

r(k) = R(0),

one alternative estimate can be found as V (m∗) = R(0)/n .

5 Detection of flickering light in an EEG signal

The measurements of the electrical signals from the brain are called ElectroEncephaloGram
(EEG) signals and are often clinically used for detection of illnesses as well as in cognitive
experiments. The EEG signal is a challenging process to deal with as the information is
usually heavily disturbed by the spontaneous EEG-activity. However, if applying a flickering
light in front of a person (with closed eyes), this will generate an EEG signal containing this
frequency, and in this case the response will be rather strong. In general, the EEG signal is a
non-stationary process, but for shorter periods (seconds), the EEG activity can be assumed to
be stationary. In this exercise, you will study a number of EEG sequences using spekgui
and judge which sequence that is recorded from a measurement with a flickering light. Start
by loading the file eegdata12 which contains three different measurements of EEG (5 s)
from the same person. One of the sequences are measured when a flickering light of 12 Hz
was introduced.
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1. Study the variables data1, data2 and data3 by loading them one by one into
spekgui and examine the realization, the covariance estimate and the spectrum esti-
mate. Which is best, the periodogram or the Welch method? Should the scale be linear
or logarithmic? Can we gather any information from the covariance estimate? Which
sequence is most likely to come from the 12 Hz flickering light?

Your Answer:'

&

$

%
2. Load the file eegdatax and study the different variables data1, data2 and data3

in spekgui. Now the frequency of the flickering light is unknown. (Hint: it is between
5 and 20 Hz).

Q. Can you judge which frequency it has and which sequence it is introduced into?'
&

$
%

6 Cross spectrum in input/output relations

The cross spectrum of the input signal X(t) and the output signal Y (t) from the filter with
frequency function H( f ) is

RX ,Y ( f ) = H( f )RX( f ).

For a white noise input signal RX( f ) = 1 and RX ,Y ( f ) = H( f ) . Use an ARMA(4,2)-process

X(t)−0.9X(t−1)+0.8X(t−2)−X(t−3)+0.8X(t−4) = e(t)+0.4e(t−1)+0.5e(t−2)

by writing

A = [1 -0.9 0.8 -1 0.8];
C = [1 0.4 0.5];

in MATLAB. Compute the filter for this ARMA-process, and a lowpass AR(1)-process as the
uncorrelated disturbance Z(t) i.e.,

[H,w]=freqz(C,A);
A2=[1 -0.95];
[H2,w]=freqz(1,A2);
kappa=abs(H).^2./(abs(H).^2+abs(H2).^2);
plot(w,kappa)
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1. Change the location of the pole of the low-pass disturbance process, e.g.

A2 = [1 0.95].

Q. What differs in the resulting coherence spectrum? Why?'

&

$

%
2. Change the power of the disturbance process,

kappa=abs(H).^2./(abs(H).^2+sigma2*abs(H2).^2);

where sigma2 can be chosen as, e.g., 0.01, 0.1, 10 or 100.

Q. How does the choice affect the coherence spectrum? Can you intuitively explain
this?'

&

$

%

7 Analysis of EKG and index finger pulse data

Measurements of electrical signals in the heart are called ElectroCardioGram (EKG, from
the german ElektroKardioGramm) signals. In medicine, this technique is commonly used to
monitor the heart activity of a patient. Another way to indirectly monitor heart activity is to
measure the pulse of the patient. In hospitals, this is commonly done using a small device on
either index finger. In this exercise, we will analyze the correlation between the two, using
the techniques studied in this course. In this exercise, you will be tasked with working out
the details on how to treat the data yourself. However, helpful tips are provided.

Load the file pulsedata. The EKG data is contained in the vector called ekg, and the
finger pulse measurements in fingerPulse. The sampling frequency is 1 kHz. Start by
plotting the data, making sure the time axis is correct.
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Q. Can you spot any periodicity? Ponder what similarities and differences you can discern
between the two signals.'

&

$

%
Estimation of covariance and spectrum

Estimate and plot the covariance functions and spectral densities of the two processes. The
estimation can be done using the WAFO functions dat2cov and dat2spec available in
ssproutines. These were used in Computer exercise 1. Remember that the input data is
a matrix with time in first column and data in second. (To estimate spectrum you can also
use welch.)

Make sure the frequency axis is scaled correctly, and note that we are primarily interested in
low frequencies. Try plotting both using linear and logarithmic (semilogy) scale on the y
axis.

Q. In which frequency range do you expect the heartbeat frequency, fH , to be found? Can
you find fH in both spectra? In the spectra, there are prominent peaks at 2 fh, 3 fH , . . . , can
you explain why? In the measurements, there is interference at some specific frequencies
(look at the logarithmic plot), which? Can you explain any of the interference peaks?'

&

$

%
Estimation of cross-covariance and cross-spectrum

We now wish to estimate the cross-covariance function of the two processes. This is done
using xcov from the MATLAB System identification toolbox, ident. Start by looking at
the documentation for the function.

doc covf

Especially note the definition of cross-covariance used in MATLAB. Use the function to
estimate and plot the cross-covariance function between the two processes up to a time lag
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of a few seconds, with the time axis properly rescaled in seconds. Recall the differences
between this function and the autocovariance function.

Q. How long is the delay from the electrical signal provoking the heartbeat until the blood
rush reaches the finger?'

&

$

%
Now, estimate the cross-spectral density of the two processes using cpsd. Recall that the
cross-spectral density is a complex-valued function.

Q. How can we plot it to capture the relevant information? Can you still identify fH ?'

&

$

%
Finally, calculate and plot the estimated squared coherence spectrum between the two pro-
cesses. Note that previous estimations can be used to calculate this.

Q. What is the coherence of the heartbeat frequency? What does this imply about how the
blood pressure propagates through the body?'

&

$

%
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